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Abstract 

Temporary bonding/debonding (TBDB) technologies have greatly contributed to the reliable fabrication of 
thin devices. However, the rapid development of large-scale, high-precision and ultra-thin devices in the 
semiconductor field has also proposed more stringent requirements for TBDB technologies. Here, we 
deliberate the recent progress of materials for temporary bonding and different debonding technologies 
over the past decade. Several common debonding methods are described, including thermal slide, wet 
chemical dissolution, mechanical peeling and laser ablation. We review the current status of different 
debonding technologies and highlight the applications of TBDB technologies in advanced electronic 
packaging. Possible solutions are proposed for the challenges and opportunities faced by different TBDB 
technologies. Ultimately, we attempt to propose an outlook on their future development and more possible 
applications. We believe that the simple schematics and refined data presented in this review would give 
readers a deep understanding of TBDB technologies and their vast application scenarios in future advanced 
electronic packaging. 
Keywords:  
advanced packaging; TBDB; laser ablation; progress; applications 

1. Introduction 

In recent years, with the rapid development of 5G, artificial intelligence, Internet of Things, automatic 
driving and big data, electronic devices are developing towards miniaturization and multi-function. In order 
to achieve high performance of electronics, advanced package technologies such as fan-out wafer level 
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package (FOWLP) [1,2], 2.5D interposer and 3D package (e.g., through-silicon via, package on package, 
micro-electro-mechanical system) have been developed [3,4,5,6,7,8,9,10]. In 3D chip stacking, a range of 
polymer-based adhesives typically bonds the device wafer to the carrier wafer, which is insensitive to the 
flatness and cleanliness of the device wafer surface. Because of their simplicity, robustness and low cost, 
adhesives are widely used throughout the microelectronics and micro-electro-mechanical system (MEMS) 
manufacturing process. These adhesives include polymers such as epoxy resins, dry films, 
benzocyclobutene (BCB), polyimide and UV-curable compounds [11,12,13,14,15]. They have the 
advantage of being relatively low temperature and can protect sensitive components. In addition, they can 
be divided into permanent adhesive bonding and temporary adhesive bonding, depending on whether the 
wafers are separated again after bonding [16]. The comparison between parament bonding and temporary 
bonding is listed in Table 1. In contrast to temporary bonding, the adhesives used for permanent bonding 
generally need to meet low dielectric constants, low water absorption, high bond strength and high stability. 
Permanent bonding technology helps to reduce the footprint and significantly improve product performance. 
Permanent bonding technology is mainly used in semiconductor applications such as radio frequency (RF), 
MEMS, light emitting diodes (LED), time of flight (ToF) devices and especially in emerging sensors such as 
complementary metal oxide semiconductors (CMOS) [17,18,19]. 
Table 1. Comparison of permanent adhesive bonding and temporary adhesive bonding. 

 

In contrast to the permanent bonding process, the temporary bonding process was originally 
developed to hold and protect ultrathin wafers. Since thicker wafers are difficult to meet the heat dissipation 
and packaging requirements of high-end chips, wafer thinning to the required thickness is often required in 
the semiconductor field. However, when the thickness of the wafer is reduced to less than 200 μm, the 
ultra-thin wafers become brittle and prone to warp [20]. Therefore, the semiconductor industry has proposed 
various temporary bonding/debonding (TBDB) technologies, in which device wafers are temporarily bonded 
to thicker rigid carriers with appropriate adhesives [21]. Figure 1 shows an overview of the different TBDB 
technologies for advanced packaging. After these device wafers are thinned, and the back-end fabrication 
process is completed, the carriers and adhesives need to be removed non-destructively. Therefore, it is 
crucial to develop various adhesives and corresponding debonding processes that can meet the 
requirements of TBDB technology. A suitable temporary material should provide sufficient adhesion to the 
wafer during the thinning process. Moreover, it should be resistant to acids and alkalis and high 
temperatures in order to remain stable during the backside processes such as curing, grinding, etching, 
metallization, etc., prior to debonding. 
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Figure 1. An overview of the different TBDB technologies for advanced packaging. 

Over the past 20 years, temporary bonding materials have been continuously updated and iterated. 
Initially, liquid wax was developed by Nikka Seiko for temporary bonding. Inorganic materials (a-Si:H, etc.) 
and polymers (polyimide, polyether ether ketone (PEEK), polydimethylsiloxane (PDMS), etc.) were also 
later adopted as temporary bonding materials [22,23,24,25,26]. Moreover, the main difference between 
these temporary bonding materials is that a corresponding debonding method needs to be developed to 
meet the non-destructive debonding of ultrathin wafers. Furthermore, the development of advanced 
temporary bonding materials and debonding processes has been a relentless goal of researchers. The first 
generation of temporary bonding materials was used for the thermal slide debonding process, such as 
Space Liquid from Nikka Seiko, HT series materials from Brewer Science [27,28,29,30,31], JSR [32], etc.; 
as the application scenarios changed, materials and techniques for debonding using solvents (e.g., Zero 
Newton temporary debonding system from TOK [33,34]), mechanical forces (e.g., BrewerBOND®305) [35] 
or lasers (e.g., 3M WSS [36], HD-3007 from HDMS [23], BrewerBOND®701 [37,38,39]) to release were 
developed. Special technologies such as ZoneBOND® [40] and air-jetting were developed [41,42]. In 
addition, hydrogenated amorphous silicon (a:Si-H) [22,43] and various polymers, such as polyelectrolyte 
[44], iCVD polyglycidylmethacrylate (PGMA) [45] and polydimethylglutarimide (PMGI) [46], have also been 
used as temporary bonding materials. 

Here, we review the corresponding temporary bonding materials, principles, applications and future 
trends according to different debonding methods. Finally, the challenges and opportunities faced by TBDB 
technology are summarized, and beneficial improvement strategies for temporary bonding materials are 
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presented. These improved TBDB technologies pave the way for higher chip yields, more cost-effective 
semiconductors and alleviation of global chip shortages. 

2. Advances in TBDB Technologies 

In thermal slide and chemical dissolution temporary bonding processes, only one adhesive is usually 
required to be spin-coated onto the device wafer or carrier wafer. However, mechanical peel-off and laser 
ablation temporary bonding processes often also require an accompanying release material to facilitate 
subsequent easier debonding of the device wafer. The main process of temporary bonding is shown 
in Figure 2 below. First, the temporary bonding adhesive is spin-coated on the carrier wafer. After removing 
the solvent by soft baking, the carrier wafer is bonded to the device wafer by thermal compression under 
vacuum or UV irradiation. Bonding quality is checked using appropriate measures, including but not only 
an ultrasonic scanning microscope and film thickness meter. The bonded wafer pair is then subjected to a 
series of backside processes such as back grinding, lithography, etching, passivation, sputtering, 
electroplating, reflow soldering and dicing processes. Finally, the thinned device wafer is mounted on a 
platform, and the carrier wafer is peeled off in an adhesive-matched debonding manner. It is worth 
mentioning that the carrier wafers cleaned with matched cleaning agent can still be recycled to save costs. 
Currently, commercial debonding technologies mainly include thermal slide debonding, mechanical peeling, 
chemical dissolution and laser ablation, some of which are shown in Table 2. These four TBDB methods 
are described in detail below. 

 
Figure 2. Main flow of temporary bonding/debonding. F represents possible external force assisting 
debonding. 
Table 2. Summary of properties of various temporary bonding materials. 

 

2.1. Thermal Slide 

Early temporary bonding materials are wax or thermoplastic polymers. These materials have low 
melting points or glass transition temperatures. When they are heated to a specific temperature, their 
viscosity decreases and becomes fluid, allowing the wafer to be released with a slight tangential force. This 
method of debonding is known as thermal slide debonding. Wax was originally developed as a thermal slide 
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debonding material by Nikka Seiko, while later Brewer Science developed the WaferBONDTM HT series of 
materials for thin wafer handling and TSV processing [47]. The HT series materials can withstand 
temperatures above 300 °C and be thermal slide-off at about 200 °C. In 2014, Rong Sun et al. developed 
a kind of temporary bonding adhesive for thermal slides, which exhibits low CTE, good chemical resistance 
and bonding strength [49]. The adhesive can be used for the wafer backside processing at 220 °C, and the 
wafer pair can be debonded in a hot slip at 235 °C. Additionally, propylene carbonate (PPC) and 
polyurethane have been developed as temporary bonding materials for thermal slides. PPC has a low 
decomposition temperature of about 210 °C, which allows it to depolymerize when heated to an 
appropriately high temperature, thus facilitating bond pair separation [73]. Li et al. designed a three-
dimensional crosslinked polyurethane (3DPU) based on thermal reversible Diels-Alder (DA) chemistry [56]. 
The reaction products of the DA reaction are unstable at high temperatures. The 3DPU is unstable at high 
temperatures and undergoes reverse reactions. The adhesives were subjected to high-temperature 
process simulations such as physical vapor deposition (PVD), plasma-enhanced chemical vapor deposition 
(PECVD) and reflow processes on 8-inch wafers with good results. The reverse DA reaction occurred at 
150 °C with the separation of device wafers thinned to 100 μm by the thermal slide method. 

There is no denying that thermal sliding debonding has made a contribution to the advanced 
packaging of chips as an early TBDB technology. However, the low thermal stability of thermal slide-
debonding materials limits wafers to withstand higher temperature processes. High-temperature processes 
such as PECVD may lead to unpredictable wafer slippage and bonding failure. The effect of temperature 
processes on bonding pair morphology was investigated by P. Montméat et al. [73]. They used 
thermoplastic resin to bond wafers and heated them. The results show that when the temperature 
increases, the TTV of the bonded pair increases, and the adhesive may shrink to the center of the structure 
to compensate for the lifting of the wafer with thinned edges. Moreover, the thermal slide debonding process 
requires a certain stress on the wafer pair to guide the separation of bonding pairs. This stress may break 
the wafer unexpectedly when handling large-size wafers or ultra-thin wafers. The thermal slide debonding 
process seems to be no longer applicable when large-size wafers or ultra-thin wafers or when the wafer 
needs to undergo a high-temperature process. It faces the challenges and limitations of wafer breakage 
and low yield of ultra-thin devices in various semiconductor manufacturing processes. However, due to its 
low cost, thermal slide debonding is still suitable for debonding small and slightly thick wafers in the field of 
electronic packaging. 

2.2. Chemical Dissolution 

Adhesive residues may remain on the wafer after debonding, so it is necessary to soak the wafer in 
suitable solvents to remove them. Based on the solubility of adhesive in a specific solvent, direct release 
of the wafer by solution immersion, also known as chemical dissolution, is possible. In addition to stirring, 
sonication or heating, perforated wafers can also be used to speed up the dissolution of adhesive material 
by increasing the contact area between the adhesive material and the solvent. Such perforated wafers can 
be made from blank glass carriers using patterning techniques. If the carrier wafers can withstand such 
mechanical influences, over 150,000 through holes of the same size can be fabricated to provide smooth 
and secure debonding. Their TTV is about 1 μm and can be cycled up to 50 times [74]. Deng et al. used a 
perforated wafer with a hole area (single hole diameter of approximately 800 µm) of 20% for chemical 
debonding of bonded pairs [50]. They also deduced that for a given perforation ratio, smaller holes could 
cause an increase in the total perimeter of contact between the solution and the adhesive layer and 
therefore exhibit higher debonding efficiency. However, when the holes are too small, they lead to an 
increase in the surface tension of the solution, which prevents the solvent from flowing into the hole. The 
holes, therefore, have a critical diameter that is related to the surface tension of the solution, the contact 
angle between the solution and the carrier, the density of the solution and the height of the solution surface 
to the bottom of the carrier. 

Micro Chem developed a lift-off resist (LOR) material (polydimethyl glutarimide) for wafer-to-wafer 
bonding and demonstrated that the LOR material could be resolved in NMP-based solvents [46]. Thermoset 
polymers have greater thermal and chemical stability compared to thermoplastic materials. However, 
thermoset polymers undergo crosslinking of molecular chains during curing, which may lead to low 
solubility. Deng et al. developed a thermosetting resin as a TBDB material by polycondensation of methyl 
diamine and aldehydes. Surprisingly, the resin can depolymerize without sacrificing its thermal and 
chemical stability. It has been demonstrated that the resin can be dissolved in 1M H2SO4 for 10 h [50]. Due 
to its great thermal stability, transparency and chemical resistance, polyisobutylene (PIB) rubber has been 
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developed for temporary bonding. BASF developed PIB products, Oppanol® 50-N (B50), 100-N (B100) and 
150-N (B150). The different molecular weights of these products lead to different viscosities and chemical 
resistance in solvents [65]. Experiments show that B100 is more tightly distributed and more solid-like at 
100–250 °C compared to B50. The PIB material can be dissolved in hexane, which supports the possibility 
of its application for chemical debonding. 

Although debonding with solvents does not leave any residue on the wafer, it consumes a large 
amount of solvent. Moreover, possible warpage and the use of porous wafers increase the costs. Obviously, 
these drawbacks greatly hinder the widespread application of chemical dissolution debonding in advanced 
electronics packaging. 

2.3. Mechanical Peel-Off 

To solve the problem that thermal slide debonding materials cannot withstand high-temperature 
processes, the development of mechanical release materials seems to be a good option. The mechanical 
peel-off method requires coating a release layer on the device wafer and an adhesive layer on the carrier 
wafer prior to bonding. After the relevant process is completed, it is mounted on a dicing film frame with the 
device wafer fixed to the bottom. A blade is inserted into the bonded wafer pair to separate the wafer gently. 
It is important to note that this method requires great care during operation; otherwise, excessive force is 
likely to cause the wafer to break. 

There has been considerable industry collaboration to achieve a more reliable mechanical debonding 
process. Brewer Science has developed a series of materials. Imec and Brewer Science reported a thinning 
process of 28 nm FinFET devices with a final thickness of 5 μm on a temporary carrier [75]. The CMOS 
substrate was bonded to the first carrier with 30 μm thick BrewerBond 305 bonding material and 
BrewerBond 510 mechanical release layer. After grinding to 50 μm, the substrate was plasma etched to 5 
μm and bonded to a second carrier using ZoneBond 5150. Fowler et al. [76] also used BrewerBond 305 to 
bond wafers, and Wuensch et al. [77] reported their bonding pairs using BrewerBond 305 and BrewerBond 
510. These device wafers were all thinned to 50 µm thick. Additionally, BrewerBond materials are also 
available for 8-inch SOI wafer to SOI wafer, reported by Y.-R. Jeon et al. In another case, bonding with 
BrewerBond C1301 and advanced mold materials, the 8-inch wafer warps less than 200 μm with less than 
2 μm die to carrier mismatch after exposure at 200 °C for 2 h [78]. In addition, to simplify the mechanical 
peel-off process, Brewer Science developed single-layer adhesive material [71], which showed good 
thermal stability and can support the wafer to be thinned to 50 μm or 20 μm, but with some edge chipping. 

Additionally, Fujifim also developed a monolayer material that combines releasing and bonding. TGA 
results showed that the material decomposes at 360 °C with 0.5% [60]. A via-middle integration flow with a 
50 μm high Cu pillar has been demonstrated [51,79]. The adhesive is about 30 μm thick, while the wafer is 
thinned to 50 μm with a total thickness variation (TTV) value of about 2 μm in this progress. The adhesive 
was later applied in embedded Wafer Level Ball Grid Array (eWLB) devices. The 8-inch eWLB wafers were 
bonded using adhesive (thickness of approximately 20.45 μm) with a TTV value of 5.8 μm. The wafer is 
thinned from 585 μm to 50 μm and is mechanically debonded by Süss MicroTech DB12T Debonder. Optical 
microscope scanning and solder ball shear test prove that the debonding process does not harm the device 
wafer [60]. In addition, Toray developed a room-temperature mechanical debonding material for handling 
thin wafers [80]. For a target thickness of 20 μm, the TTV of the adhesive layer was 3 to 5 μm, while the 
average TTV of the bonded pairs was about 2.7 μm after the bonding process. After being back ground to 
30 μm thickness, the device wafer is mechanically debonded. J. Bertheau et al. proposed a method for the 
wafer-to-wafer bonding process [81]. A temporary bonding agent from Fujifilm was used to bond 300 mm 
wafers. After mechanical grinding, chemical mechanical planarization (CMP) and dry etching, the wafer was 
thinned to 5.6 μm with an average TTV value of 2.5 μm. A damascene process, including dielectric layers 
deposition, lithography, TaN/Cu seed layer deposition, copper electroplating and CMP, has been executed 
on the wafer. It is then permanently bonded to another substrate wafer and mechanically debonded by a 
Suss DB12T debonding at room temperature. In addition, Li et al. developed mechanical debonding 
material with high performance [82]. The TTV of this film is only 0.13 μm. After curing, thinning and CMP 
process, the device wafer could be reduced to 70 μm with no defects. 

In order to avoid damage to the wafer caused by inserting the blade, it is necessary to develop new 
mechanical debonding methods. The air jetting debonding uses airflow instead of blades to separate device 
wafers from carrier wafers. The process, AirDebond™ and Z-coat series material were first reported by Hao 
Tang from Micro Materials Inc. (MMI) in 2016 [41] and was developed for wafers with flat surfaces, high 
topography or bumps. The process was applied to FOWLP containing the processing of RDL passivation 
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layer, sputtering Ti/Cu metal layer and wafer level molding [42]. Z-coat 211, a polyimide-based adhesive, is 
adopted in this process, which shows low peel adhesion on silicon and glass, high thermostability, chemical 
resistivity, good shear strength and thermal stability. After air jetting releasing by a semi-automatic wafer 
debonder Z-D200 (MMI), the wafer was cleaned by Z-Clean 830. 

Mechanical peel-off debonding is obviously a simple and convenient way to release wafers, which 
frees them from extra thermal history. Since the temporary bonding material usually has the proper 
adhesion to support the manufacturing process, inserting the blade places additional mechanical stress on 
the device. Such mechanical forces cannot be ignored, especially when dealing with large or ultra-thin 
wafers, as this increases the risk of their breakage. It can be seen that the mechanical lift-off method is only 
suitable for peeling off small-sized or thicker wafer bonding pairs. Therefore, it is important to explore new 
debonding methods that are friendly to large-scale ultra-thin wafers in order to increase the yield of ultra-
thin devices. 

2.4. Laser Ablation 

The mechanical peel-off and thermal slide process inevitably generate mechanical stress during the 
removal of the rigid carrier, which is difficult to meet the requirement of releasing ultra-thin wafers (even 
several micrometers) for ultra-sophisticated chips. Considering the scalability of TBDB technologies in 
future high-density heterogeneous integration, bonding materials in the heterogeneous integration must be 
compatible with high temperature and chemical-resistant process conditions, which makes a thermal slide 
and wet chemical dissolution incompatible with the TBDB technologies. In addition, these traditional 
methods are still limited by the disadvantages of easy damage, low yield and low throughput in large-scale 
applications. Laser debonding technology has the advantages of high energy input efficiency, low device 
damage and flexible operation, which is easier to meet the needs of low-loss, high-efficiency and large-
scale manufacturing. As a TBDB technology with broad application prospects, the process flow of laser 
debonding technology is generally as follows. First, a laser release layer is formed on the carrier wafer, and 
an adhesive layer is formed on the device wafer. Significantly, the laser release layer needs to possess 
high absorbance at a specific wavelength band. Moreover, it is also necessary to use rigid wafers (e.g., 
glass, sapphire and silicon carbide) through which the laser beam can pass as carriers so that most of the 
transmitted photon energy can be directionally deposited on the release layer. 

Currently, the commonly used laser wavelengths range from ultraviolet (254 nm, 308 nm, 355 nm) to 
infrared (1064 nm) [68,70,72,83]. According to previous reports in the literature, the principles of laser 
ablation of materials mainly include the photothermal effect or photochemical effect. The photochemical 
effect refers to the decomposition reaction in which the molecules of the material absorb photon energy 
and are excited to the electronically excited state, which eventually leads to the direct breaking of chemical 
bonds. The formula for calculating photon energy is E = hc/λ, where E is the photon energy, h is Planck’s 
constant, c is the speed of light, and λ is the wavelength. According to the above formula, the energy of the 
1064 nm infrared photon is about 1.165 eV, which is lower than the bond energy of most chemical bonds 
such as C-C, C-O and C-N. Therefore, the ablation of the release material under the action of an infrared 
laser is mainly dominated by the photothermal effect. Additionally, 3M’s light-to-heat conversion (LTHC) 
materials adding carbon black has a high absorption coefficient in the infrared, so they can be released 
using an infrared laser. Montmeat, P. et al. studied the 300 mm wafer progress based on 3M™ Wafer 
Support System [84]. The LTHC release layer was applied to a glass wafer, and LC5200 3M™ UV-cured 
polymer was used as the adhesive. Similarly, Z. Ye et al. reported an infrared release layer material (WLP 
LB310) from Samcien Semiconductor Materials [72]. The material has better thermal stability (T1% = 406 
°C and T5% = 523 °C) compared to similar products and can be cured at low temperatures (180 °C). 
Moreover, the addition of nano-materials improved the adhesion of glass. Due to the large heat-affected 
zone created when heating the release layer, thermal damage to the wafer is possible. In contrast, due to 
the low penetration depth and strong photochemical effect, the UV laser can greatly suppress the thermal 
effect during the lift-off process. K. Kennes1 et al. investigated the factors that may cause damage during 
UV laser debonding [85,86]. They found that no damage was caused by UV or thermal effects. However, 
the acoustic shock wave generated during the ablation of the laser-released layer may lead to damage of 
die, especially during the debonding of ultra-thin devices. Fortunately, this damage can be avoided by 
introducing a separation layer (acoustic layer) between the laser release layer and the die interface on the 
die prior to die singulation. 

However, it is still controversial whether UV laser ablation of materials is dominated by photothermal 
effects, photochemical effects, or a combination of both. Undoubtedly, the gas generated by the 
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decomposition of materials during laser ablation is conducive to the separation of materials from substrates. 
In addition, laser-release materials also need to meet good thermal stability and photosensitivity. This has 
guided the selection, design and synthesis of laser-release materials. For example, amorphous silicon 
hydride (a-Si:H) has been developed as a laser-release material due to its high-temperature resistance 
(500~700 °C) and decomposition gas generation, which could be debonded at 308 nm or 355 nm 
[22,43,54]. Recently, Wang et al. deposited 50 nm thick a-Si:H as a release layer on a glass wafer and 
SiO2 as a barrier layer by PECVD. The glass wafer was then bonded and can be debonded by 355 nm 
laser irradiation [87]. However, the high cost of preparing silicon hydride by plasma-enhanced chemical 
vapor deposition limits its market application. In contrast, photopolymers with a certain viscosity have 
attracted more attention in the field of advanced packaging. Hasegawa et al. from JSR developed a kind of 
aromatic polymer with a hydroxyl group as an adhesive material and adopted a thermosetting polymer with 
UV absorption units as release material [55]. By setting different thicknesses of the release material, high 
laser absorption in the 308 nm or 355 nm band can be satisfied. Zhang et al. from Samcien Semiconductor 
Materials reported the 8-inch bonding process using WLP LB202 as release material and WLP TB1202 as 
adhesive material [57]. Under the irradiation of a 308 nm laser, the automatic separation of wafer bonding 
pairs can be achieved. In another case, they reported the 8-inch bonding process using WLP LB210 as 
release material and WLP TB4130 as an adhesive material, while the wafer pair could the debonded by 
355 nm laser [61]. Liu et al. reported that two released materials could be decomposed under UV laser 
irradiation in the 308 nm, 343 nm or 355 nm band for FOWLP [63,88]. In order to improve the utility of 
temporary bonding materials, the development of advanced multifunctional temporary bonding materials 
with comprehensive heterogeneous properties has always been the current pursuit goal. The 
photopolymers with low Tg properties developed by Zhang et al. can be bonded or laminated on different 
substrates at moderate and low temperatures [62,63]. Then, after thermal or UV curing, the desired 
mechanical stability and chemical resistance can be achieved in subsequent high-temperature and vacuum 
processes. Finally, due to their high sensitivity to UV laser light, they can be debonded by laser ablation. 

In order to simplify the process, the current trend is to develop materials that combine functions of 
bonding and releasing or to produce dry film or tape products. Furthermore, 3M developed a single and 
triple-layer temporary bonding tape [64,70]. These two types of tapes are oriented to different application 
scenarios. The single-layer product was applied in the RDL-first procedure, and the triple-layer product was 
applied in RDL-last [64]. Improved triple-layer tape was applied in bonding 300 mm and 600 mm square 
panels and glass carriers [70]. Both tapes can be laser debonded at 308 nm, 355 nm or 1064 nm. 
Additionally, Liu et al. developed two monolayer materials that respond to 308 nm and 355 nm, respectively 
[67]. Moreover, one of the materials can be thermally cured to protect the bond line and can be wet cleaned 
after the whole process. Recently, to exhibit high reliability when withstanding the backside processes in 
harsh circumstances, Dai et al. adjusted the flexible chain segment structure to skillfully adjust the glass 
transition temperature and bonding temperature of thermoplastic material SLAs [89]. It has excellent 355 
nm responsiveness and high-temperature resistance compared to other thermoplastic materials. In 
addition, Shiojima et al. from Sekisui Chemical developed a self-releasing tape called SELFA [68]. SELFA 
has a sandwich structure of a self-releasing adhesive layer, a base film and an easy-peeling adhesive layer. 
After lamination on the wafer, the chemical and thermal resistance of the tape can be enhanced under 405 
nm UV irradiation. The N2 by-products produced by the tape ablated by a 355 nm laser can assist in the 
separation of wafer bonding pairs. The improved tape was developed for hybrid bonding, which has greater 
thermal stability, tensile modulus and other properties [90]. The wafers bonded by this adhesive were 
thinned from 725 μm to 25 μm, and the TTV value was only 3 μm. Furthermore, Shin-Etsu developed 
siloxane-based crosslinked polymers [69]. These thermosetting polymers possess rigid aromatic ring 
structures and photoactive groups, which enable them to have great thermal stability (>300 °C) and laser 
responsiveness. The material exhibits good responsiveness at 355 nm wavelength, and the improved 
material LRL-2 can be cleaned with a special solvent after debonding. More excitingly, to solve the problem 
of the high cost of laser equipment and improve processing efficiency, Wang et al. propose a kind of 
photopolymer release material UDP801. UDP801 shows a good response to 365 nm and no defects after 
baking in an oxygen oven at 200 °C. Interestingly, it releases gas upon irradiation with a 365 nm UV lamp, 
which helps to separate bonding pairs and reduce the cost of laser debonding [91]. 

Regarding laser debonding equipment, famous suppliers include XBS300 temporary bonding 
equipment and LD12 debonding equipment developed by SUSS from Germany, EVG850 series temporary 
bonding equipment and debonding equipment developed by EVG from Austria, and DSI-S-DB661 series 
fully automatic laser debonding equipment developed by Han’s Laser. The DFL7560L from DISCO is a fully 
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automatic laser lift-off machine capable of handling 6-inch wafers. The layers of material in the substrate 
can be debonded from the substrate by laser irradiation. The unique optics developed allow processing at 
optimum power over a wide focal range, thus reducing wafer damage and separation. In addition, the 
surface roughness after sapphire separation is extremely low. By using diode-pumped solid-state lasers 
(DPSS), not only high process speeds and high process quality wafer stripping are achieved, but also 
maintenance times are significantly reduced compared to gas lasers. Due to the spiral processing of the 
beam motion, excessive acceleration and deceleration are avoided, which further enables efficient 
separation of the devices. In addition, due to the low peak energy fluctuations of the single-pulse laser, this 
enables stable processing and high throughput for many extremely small chips, including micro LEDs. 

The following four problems remain with current laser debonding technologies: (1) Glass substrates 
are difficult to process with semiconductor devices designed primarily around silicon and require expensive 
upgrades to enable the processing of glass wafers. (2) Organic adhesives are typically limited to processing 
temperatures below 300 °C, which limits their use in back-end processing. (3) Silicon carriers must be 
completely removed using grinding, polishing and etching processes, which results in micron range 
variations across the working device layer surface, making this method unsuitable for thin layer stacks at 
advanced nodes. (4) The thickness of organic temporary bonding adhesives is typically in the micron range, 
requiring thinner response layers for more accurate (nanoscale) layer transfer. In order to address these 
issues, EVG’s NanoCleave technology uses an infrared laser to be absorbed through the silicon wafer by 
an inorganic release layer pre-positioned in the silicon stack, resulting in the silicon being cleaved in a 
predefined, precisely defined layer or region. The ability to use inorganic release layers allows for the use 
of more precise, thinner release layers (in the range of a few nanometers, compared to a few microns for 
organic adhesives). In addition, the inorganic release layer is compatible with high-temperature processing 
(up to 1000 °C), enabling many new front-end applications to transfer layers where they are not compatible 
with organic adhesives. In summary, silicon carriers with inorganic release layers avoid the problem of 
incompatibility with glass carriers at high temperatures. In addition, the nanoscale accuracy of infrared laser 
triggering opens up the possibility of handling ultra-thin device wafers without changing the recording 
process. The subsequent stacking of such thin device layers enables higher bandwidth interconnects and 
opens up new opportunities for chip design and segmentation for next-generation high-performance 
systems. The infrared laser cutting technology developed by EVG is suitable for 2.5D FOWLP, where the 
device layers are generally prepared by depositing and growing inorganic materials, resulting in high-
temperature resistance. However, this method of depositing inorganic materials cannot be applied to wafer 
devices with grooves and raised structures because they cannot be made thicker. 

2.5. Comparison 

After almost two decades of development, a variety of interesting temporary bonding techniques and 
materials have been continuously developed. In terms of bonding times, this is largely dependent on the 
properties of the material. Compared to thermoplastic materials, thermoset materials have a shorter 
bonding time. As is shown in Table 3, different debonding technologies have their own characteristics, 
which could be well utilized in different applications. Thermal slide debonding releases the wafer by applying 
a slip force to the wafer at a specific high temperature, which means that the wafer necessarily suffers an 
additional risk of chipping caused by mechanical stress. Chemical debonding uses chemical solvents to 
dissolve the adhesive directly. During this process, the wafers are virtually unaffected by stress and chipping 
due to uniform dissolution. Although this debonding process requires a special perforated carrier plate to 
speed up the dissolution rate, the process still takes a long time and a large amount of solvent. Although 
the mechanical peel-off process can be performed at room temperature, there is still a high risk of chipping 
during wafer separation using a blade. In contrast, using the laser debonding process enables the wafer to 
be released by the laser at low force and short time, which meets the requirements of wafer lift-off for high-
density, large-size and ultra-thin devices. It is undeniable that the high cost of laser debonding equipment 
is still an urgent problem to be solved. In terms of debonding time, the laser method currently offers the 
fastest debonding speed, typically in excess of 30 wafers per hour. Moreover, the evolution of debonding 
processes also puts forward new requirements on TBDB materials, such as better thermal stability and 
chemical resistance, which makes thermal sliding and wet-chemical dissolution methods potentially 
obsolete. At present, mechanical lift-off and laser debonding methods still occupy a large market share. 
With the development of wafer-level packaging towards large-sized ultra-thin wafers, it is urgent to develop 
multifunctional TBDB materials with high-temperature resistance, chemical resistance and certain viscosity. 
Second, the intrinsic relationship between the TBDB material and the debonding process needs to be 
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established. For laser debonding, there is a lack of systematic research on the interaction mechanism 
between laser and released materials in the bulk ablation mode. In addition, exploring new debonding 
processes is of great significance for further promoting efficient, high-precision and high-reliability scalable 
TBDB processes. 
Table 3. Comparison of different TBDB technologies. 

 

3. Applications in Advanced Packaging 

3.1. Fan-Out Wafer Level Packaging 

FOWLP processes such as eWLB and integrated fan-out (InFO) allow heterogeneous system 
integration and shorten the interconnection of each chip [92]. Moreover, they can reduce the size of the 
package and improve the integrity of the power supply and signal [93]. As shown in Figure 3, two methods 
are widely utilized in FOWLP flow: chip-first and chip-last, referring to the point in the process when chips 
are placed on the substrate [94]. 

 
Figure 3. Two typical RDL processes in FOWLP: chip-first process flows; (a) chip-last process flows (b). 

In the chip-first process, a known good device (KGD) is first connected to the substrate through 
removable adhesive tape. Then it is filled with epoxy resin and separated from the adhesive tape. Finally, 
RDL and solder balls are formed on the back. Although the cost of this process is low, it cannot be 
determined whether the RDL is effectively formed, so there is a large KGD loss. In the chip-last process, 
RDL is first performed on the release layer, and then KGD with high precision is formed. This advanced 
method can effectively reduce the loss of KGD. Imec is developing a novel 300 mm FOWLP to achieve 20 
pitch density, combining logic die, flash memory and DRAM. During the process, the die temporary bonds 
twice to be manufactured and transferred, which greatly increases the machinability and accuracy [95]. The 
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first debonding process uses mechanical peel-off, while the second debonding process can select a thermal 
slide, chemical dissolution or laser ablation. 

3.2. TSV and Cu-Cu Bonding 

Composed of multiple vertically bonded and interconnected thin chips, 3D integrated circuits (3D-IC) 
have great advantages in performance, size, density and heterogeneous integration. Through hole via 
(TSV), as a key loop in 3D encapsulation, it reduces the distance of signal transmission and the 
encapsulation volume through vertical connection [96]. The production of TSV can be integrated into 
different stages of the process. Years of development have made the via-middle and via-last processes 
more mature. The TSV is etched on the wafer after manufacturing a complementary metal oxide 
semiconductor (CMOS) but before the back end of the line (BEOL) during the via-middle process. The via-
last process forms TSV from the backside of the chip after the device wafer is fabricated. In the 3D 
integrated circuit manufacturing process, TBDB technologies can effectively maintain the stability of the 
chip during etching, electroplating and CMP. However, these harsh semiconductor process conditions also 
bring challenges to the chemical stability of TBDB materials (Figure 4). Cooperating with Brewer Science, 
Imec has also developed a few generations of 300 mm via-middle and via-last processes [96]. 

 
Figure 4. Three manufacturing processes of TSV: via-middle (a); via-last (b); Cu-Cu bonding (c). 

Although the temporary bonding process facilitates the manufacture of TSVs, the temporary bonding 
adhesive may enter the through-holes during processing and cause cross-contamination. Therefore, after 
debonding, the device wafers need to be cleaned with solvent. The megasonic cleaning was also 
recommended by Brewer Science for its reduced cycle time and solvent consumption [97]. They also 
improved the cleaning process of BrewerBond 305. Experiments have shown that faster cleaning can be 
achieved using UHP d-limonene and HPC fan jet pressure, which shows the possibility of cleaning silicon 
wafers containing silicon-etched structures [98]. In addition, they recommend plasma cleaning of the silicon 
wafer surface to remove adhesive residues completely. 

In 3D-ICs, the connection between chips or between chips and wafers is usually realized by Cu-Cu 
bonding. As shown in Figure 4, by aligning the TSV in a high-temperature and high-pressure environment, 
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copper atoms can move and form grains at the interface to realize the connection. This is a precise process 
as the diameter of TSV is usually only a few tens of microns. The dislocation or incomplete connection of 
the TSV leads to the degradation of chip performance or loss of function. Sekisui reported their temporary 
adhesive tape that could withstand over 300 °C, which is available for Cu-Cu bonding [90]. The glass-
adhesive-wafer stack was heated on a hot plate at 300 °C for 30 min, and no delamination was observed 
after heating. By temporarily bonding the chips to be processed on different carriers, aligning and joining 
the chips can effectively improve the processing accuracy and reduce the scrap rate. 

3.3. Two-Dimensional Material Transfer 

Two-dimensional materials such as graphene, transition metal dichalcogenides (TMDs), hexagonal 
boron nitride (h-BN) and black phosphorus (BP) have shown great properties, such as high carrier mobility, 
which brings them good potential in future high-performance chips. However, as the most widely used 
method for manufacturing two-dimensional materials, chemical vapor deposition (CVD) usually needs ultra-
high manufacturing temperature, which greatly exceeds the maximum temperature that materials can 
withstand in electronic manufacturing. One solution is to reduce the temperature of the CVD process, but 
it may lead to a potential reduction in material quality [99]. As illustrated by Figure 5, another approach is 
to grow 2D materials on other substrates, then transfer them to target substrates or devices, which is 
compatible with electronics manufacturing. Recently, Qian et al. reported a case using a low molecular 
weight polyvinyl acetate (PVAc) with good solubility as a temporary adhesive and carrier transfer [100]. The 
2D material grown on the copper foil surface was covered by a spin-coating PVAc solution. The bonded 
pair was then soaked in a solution of 0.1 M of ammonium persulfate for 10 h to etch the Cu foil. The cleaned 
PVAc/graphene block was later transferred onto a target substrate, and the PVAc was dissolved in acetone. 
Compared with the previous transfer using PMMA, PVA or other materials, graphene/h-BN transferred by 
PVAc presents better surface quality and higher charge mobility. A. Phommahaxay et al. also reported the 
application of the laser debonding process in WS2 2D material transfer [101]. After WS2 has been grown 
on the substrate, it is temporarily bonded to the glass carrier. It is then mechanically separated from the 
originally grown substrate and bonded to the target substrate. Finally, the glass carrier was peeled off by 
laser ablation of the adhesive layer. 
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Figure 5. Two-dimensional layer transfer flow with TBDB technology. 

In the past decade, various TBDB technologies have been widely used in wafer thinning and electronic 
packaging. At the same time, a potential application for two-dimensional material transfer has also been 
developed. We believe the temporary bonding debonding process will become more and more important 
in higher-density manufacturing in the future. Due to the different wafer sizes and production requirements, 
the temporary bonding materials should be matched with different debonding methods, which, at the same 
time, require materials with a better-matched CTE and higher thermal resistance. 

4. Conclusions 

With the vigorous development of optoelectronic devices today, TBDB technology has not only 
become one of the core processes in the field of advanced electronic packaging but also provides and 
creates new manufacturing methods for highly integrated, ultra-thin and miniaturized devices. Considering 
that TBDB technology is crucial to improve the yield and productivity of ultra-thin device manufacturing, 
further improvements in efficiency and quality of TBDB technologies would directly affect the market 
competitiveness of advanced packaging. Therefore, the development of new temporary bonding materials 
and corresponding new TBDB processes to break through the critical technical issues faced in high-end 
chip thinning processes would directly contribute to the rapid development of advanced packaging. This 
mainly provides system solutions for ultra-thin wafer processing and handling, ultra-thin device 



manufacturing and 3D stacked packaging. In addition, technological breakthroughs in related industries will 
greatly change people’s lifestyles and promote the development of social structures and lifestyles in a more 
intelligent direction. In conclusion, the development of high-performance temporary bonding key materials 
and new high-efficiency and high-quality debonding processes will be a productive process. We believe 
that the further improvement of TBDB technologies is of great significance for promoting the rapid 
development of smart mobile terminals, IOT, AI and 5G. 
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