

EV Group announces NanoCleave layer release new technology revolutionizing 3D Integration for advanced packaging and transistor scaling – January 30, 2024

EVG introduced NanoCleave™, a revolutionary layer release technology for silicon that enables ultra-thin layer stacking for front-end processing, including advanced logic, memory and power device formation, as well as semiconductor advanced packaging. NanoCleave is a fully front-end-compatible layer release technology that features an IR laser that can pass through silicon, which is transparent to the IR laser wavelength. NanoCleave enables silicon wafer carriers in advanced packaging processes such as FoWLP using mold and reconstituted wafers as well as interposers for 3D SIC. At the same time, its compatibility with high-temperature processes enables completely novel process flows for 3D IC and 3D sequential integration applications. EVG's new NanoCleave technology utilizes an IR laser and inorganic release materials to enable laser debonding on silicon with nanometer precision.

EVGRISSO NanoCleave" 레이에 퀄리즈 시스템은 나노미티 정말도로 원리콘 기판에서 초박정 레이어 를 분리할 수 있어 심단 패키칭 및 트랜지스티 스케일링을 위한 3D 집적에 역신을 가져온다

서운~(뉴스와이아)-MEMS, 나노기술, 반도제 시장용 웨이피 본당 및 리소그래피 장비 문약를 선도하는 EV 그 롬(이하 EVG)은 반도체 제조를 위한 핵신적인 레이어 윌리즈 기술 나노글리브™(NanoCleave™)를 출시한다고 밝혔다.

나노물리브 기술은 첨단 로직, 메오리, 전격 반도체 프런트엔드 공정은 물론 첨단 반도체 패키장에 초막형 레 이어 점증을 가능하게 한다. 나노물리브는 반도체 전 공정에 완벽하게 호한되는 레이어 윌리즈 기술로서, 실리 콘과하는 적외선 레이저를 사용하는 것이 특징이다. 또한 특수 조성된 구기 박막과 함께 사용할 경우, 나 노마터의 정말도로 초박형 필름이나 레이어를 실리콘 캐리어로부터 적외선 레이저로 분리할 수 있게 해준다. 나노글리브는 EMC (epoxy mold compounds)와 제국성 웨이퍼(reconstituted wefer)를 사용하는 편아웃 웨이퍼 레벨 패키정(FoWLP)부터 3D SIC (3D Stacking IC)의 언터포저 같은 첨단 패키정 궁정에서 실리콘 웨이퍼 캐리어 사용을 가능하게 한다. 이뿐만 아니라, 고온 궁정에도 적용할 수 있어 3D IC 및 3D 순차 집적 애플리케이션에서 완전히 세로운 궁장 블로를 구현할 수가 있다. 이는 실리콘 캐리어 상의 초박형 레이어까지도 하이브리도 및 퓨전 본당이 가능해 3D 및 이중 집적에 혁신을 가져다를 뿐만 아니라, 차세대 트렌지스터 집적화 설계에서 필요한 레이어 이승을 가능하게 한다.

EVG는 코엑스에서 1월 31일부터 2월 2일까지 개최되는 SEMICON 코리아 2024 전시회에 참가해 나노클리브 신기술을 소개한다. EVG 무스(무스 변호: DB32, 3층)를 방문하면 EVG 임원들을 직접 만나서 이 혁신적인 적외 선 레이저 이공 기술에 귀해 노인한 수 있다.

◇ 3D 적층 및 후공정에서 실리콘 캐리어 사용의 이점

3D 집쪽에서는 인터커넥션 대역목이 접접 더 높아지면서 더 고성능의 시스템을 구현할 수 있도록 박형 웨이퍼 공정을 위한 캐리어 기술이 중요하다. 이를 위해 기존 주류 기법들은 유리 캐리어를 사용한다. 이 기법은 유기 접착제를 이용해 인시 본당을 해서 디바이스 레이어를 형성한 다음, 자외선(LV) 파장 레이저를 사용해 점착 제를 용해시기고, 디바이스 레이어를 분리한 후 최종 원상품 웨이퍼 상에 명구적으로 본당한다. 하지만 유리 기판은 실리콘 위주로 설계된 반도체 제조 장비를 사용해서 처리하기가 까다롭고, 유리 웨이퍼를 처리할 수 있 도록 업그레이드하려면 비용이 많아 든다. 이뿐만 아니라 유기질 접착제는 통상적으로 300°C 이해 처리 온도 도 사용이 제한되므로, 후공정에 사용하기에 한계가 있다.

나노글리브 기술은 무기 박막을 활용하는 실리콘 캐리어를 사용할 수 있어 이런 온도 한제와 유리 캐리어의 호 한성 이슈를 피할 수 있다. 또 IR 레이저를 사용해서 나노미터 정밀도로 클리벵이 가능하므로 기존 공정을 변 경하지 않고서 초박형 디바이스 웨이퍼를 처리할 수 있다. 이렇게 만들어진 초박형 디바이스 레이어를 적충하 면 높은 대역목의 인터커넥트를 구현할 수 있으며, 자세대 고성능 시스템을 위한 다이를 설계 및 세혼화하 기 위한 세로운 기회를 만들 수 있다.

◇ 차세대 트랜지스터 노드에 요구되는 새로운 레이어 이송 프로세스

트랜지스터 로드템이 3m 이하 노드로 진화함에 따라 매립형 전원 레일, 후면 전원 궁금 네트워크, 상보성 FET(CET), 20 원자 재일 같은 세요운 아키네처와 실계 혁신이 필요하였다. 이런 모든 기념에는 극히 잃은 소재의 레이어 이승이 요구된다. 실리를 캐리어와 무기 박막은 전 공정 제조 품트를 위한 트로세스 청결성, 소로 호현성, 높은 처리 온도 요건을 지원한다. 지금까진 실리콘 캐리어가 그라인딩, 연마, 식각 공정을 거쳐서 완벽하게 제거돼야 했지만, 이는 작업 중인 디바이스 레이어의 표면에 마이크로 데의 차이를 유발하므로 첨단 트랜지스터 노드의 박형 레이어 착성에 사용하기에는 적합하지 않았다.

EVG의 새로운 나노글리브 기술은 적외선 레이저와 무기 박막을 사용하므로 실리콘상에서 나노미터 정밀도로 레이저 다본당이 가능하다. 아는 첨단 패기정 공정에서 유리 기만을 사용할 필요가 없게 해 온도 한계와 유리 지리의 호한성 문제를 피할 수 있게 해주며, 기존 공정을 변경하지 않고도 전 공정에서 캐리어를 통해 초박형 (한 자원수 마이크론 대 이하) 레이어를 이송할 수 있다. 이런 나노미터대 정밀도를 지원하는 EVG의 새로운 프로세스는 더 잃은 디바이스 레이어와 패키지가 필요한 첨단 반도체 디바이스 로드램의 요구를 충족하고, 항상 된 이종 집작을 가능하게 하며, 유리 기만 사용 필요성 제거 및 박막 레이어 이승 가능성을 통해 공정 비용을 집간하 수 있게 해주다.

EVG 그룹의 기술 이사 풀 린드너(Paul Lindner)는 "반도체 공정 노드를 축소하기가 갈수록 더 복잡하고 이려워 지고 있다. 공정 노드를 축소하려면 프로세스 허용 공차 또한 점점 더 출어들기 때문이다. 업계는 더 높은 집적 도와 더 높은 디바이스 성능을 달성하기 위한 세로은 프로세스와 집적 방법이 필요하다. 우리의 나노글리브 레이어 탈리즈 기술은 박형 레이어와 다이 작성을 통한 반도체 크기 축소에서 개인 제인지가 될 것이며, 반도체 업계에서 가장 압박이 심한 요구 사항들을 해결할 잠재력을 갖추고 있다. 나노글리브는 표준 실리콘 웨이퍼 및 웨이퍼 공정들과 호환되는 유연하고 범용성이 뛰어난 레이어 탈리즈 기술을 통해 우리 고객이 첨단 디바이스 및 패키정 로드템을 실현할 수 있게 지원할 것이며, 고객들은 이 기술을 자신들의 기존 펌에 지체없이 통합하고 보였다.

◇ 차별화된 IR 레이저 기술

EVG의 나노글리브 기술은 실리콘을 두파하는 고유의 파장을 사용해 실리콘 웨이퍼 뒷면을 적외선 레이저에 노술시킨다. 표준 중착 공청으로 형성된 무기 박막이 IR 광물 음수형으로써 사전에 정명하게 지정된 레이어나 면적으로 실리콘을 관리시킨다. 무기 박막을 사용함으로써 중 더 정원이고 없는 레이어를 사용할 수 있다(유기 접착제를 사용할 때 수 마이크콘데였던 것에 비해 수 나노미터대로 잃아진). 뿐만 아니라 무기 박막은 고온 공 정(청대 100°C)과 혼합할 수 있으므로 예미택시, 중착, 어닐링처럼 유기 접착제를 사용할 수 없는 많은 새로운 전 공정 애플리케이션에서 레이어 이송을 가능하게 한다.

◇ 제품 공급

EVG의 나노클리브 기술은 현재 EVG 본사에서 데모가 가능하다.

https://www.factn.co.kr/_press?newsid=983413