

Korea)

EV Group announces new NanoCleave layer release technology... 3D integration innovation from advanced packaging to transistor miniaturization – January 29, 2024

EV Group, NanoCleave 레이어 릴리즈 신기술 발표...첨단 패키징부 터 트랜지스터 소형화까지 3D 집적 혁신

옷 정재훈 기자 │ ② 입력 2024.01.30 15:31 │ 厚 댓글 0

적외선(IR) 레이저 적용한 EVG의 레이어 분리 신기술, 실리콘 웨이퍼 투과하여 나노미 터 정밀도로 레이어 이송 기조이 요리 기파 나용은 신리코 웨이퍼르 안전 대체 바마 2D 전추 가느

기존의 유리 기판 사용을 실리콘 웨이퍼로 완전 대체, 박막 3D 적층 가능

EVG®850 NanoCleave 레이어 릴리즈 시스템은 나노미터 정밀도로 실리콘 기판으로부터 초박형 레이어를 분리할 수 있어 첨단 패키 징과 트랜지스터 스케일링을 위한 3D 집적에 혁신을 가져온다. 사진=EV Group(EVG) [비즈월드] MEMS, 나노기술, 반도체 시장용 웨이퍼 본딩과 소그래피 장비 분야 전문 기업인 'EV Group(이하 EVG)'은 반도체 제조를 위한 혁신적인 레이어 릴리즈 기술인 'anoCleave'를 최근 출시한다고 30일 밝혔다.

NanoCleave 기술은 첨단 로직, 메모리, 전력 반도체 프런트 엔드 공정은 물론 첨단 반도체 패키징에 초박형 레이어 적 층을 가능하게 한다고 업체 측은 설명했다.

해당 기술은 반도체 전 공정에 완벽하게 호환되는 레이어 릴리즈 기술로, 실리콘을 투과하는 적외선 레이저를 사용하는 것이 특징이다.

또한 특수 조성된 무기 박막과 함께 사용할 경우 나노미터의 정밀도로 초박형 필름이나 레이어를 실 리콘 캐리어로부터 적외선 레이저로 분리할 수 있게 해준다고 한다.

또한 특수 조성된 무기 박막과 함께 사용할 경우 나노미터의 정밀도로 초박형 필름이나 레이어를 실 리콘 캐리어로부터 적외선 레이저로 분리할 수 있게 해준다고 한다.

NanoCleave는 EMC(epoxy mold compounds)와 재구성 웨이퍼(reconstituted wafer)를 사용하는 팬아 웃 웨이퍼 레벨 패키징(FoWLP)에서부터 3D SIC(3D Stacking IC)의 인터포저 같은 첨단 패키징 공정에 서 실리콘 웨이퍼 캐리어 사용을 가능하게 한다.

뿐만 아니라 고온 공정에도 적용할 수 있어 3D IC와 3D 순차 집적 애플리케이션에서 완전히 새로운 공정 플로우를 구현할 수가 있다. 이는 실리콘 캐리어 상의 초박형 레이어까지도 하이브리드 및 퓨전 본딩이 가능해 3D 및 이종 집적 에 혁신을 가져다줄 뿐만 아니라 차세대 트랜지스터 집적화 설계에서 필요한 레이어 이송을 가능하 게 한다는 것이다.

EVG는 서울 코엑스에서 오는 1월 31일부터 2월 2일까지 개최되는 'SEMICON 코리아 2024' 전시회에 참가해 NanoCleave 신기술을 소개한다.

EVG 부스를 방문하면 EVG 임원들을 직접 만나 이 혁신적인 이 적외선 레이저 이송 기술에 관해서 논 의할 수 있다고 업체 측은 전했다.

3D 집적에서는 점점 더 높아지는 인터커넥션 대역폭으로 보다 고성능의 시스템을 구현할 수 있도록 박형 웨이퍼 공정을 위한 캐리어 기술이 중요하다.

이를 위해 기존의 주류 기법들은 유리 캐리어를 사용한다. 이 기법은 유기 접착제를 이용해 임시 본 딩을 해서 디바이스 레이어를 형성한 다음, 자외선(UV) 파장 레이저를 사용해서 접착제를 용해시키 고, 디바이스 레이어를 분리한 후 최종 완성품 웨이퍼 상에 영구적으로 본딩한다.

그러나 유리 기판은 실리콘 위주로 설계된 반도체 제조 장비를 사용해서 처리하기가 까다롭고, 유리 웨이퍼를 처리할 수 있도록 업그레이드를 하려면 비용이 많이 든다. 뿐만 아니라 유기질 접착제는 통 상적으로 300℃ 이하의 처리 온도로 사용이 제한되므로, 후공정에 사용하기에 한계가 있다.

NanoCleave 기술은 무기 박막을 사용해는 실리콘 캐리어를 사용할 수 있어 이런 온도의 한계와 유리 캐리어의 호환성 이슈를 피할 수 있다.

이와 함께 IR 레이저를 사용해서 나노미터 정밀도로 클리빙이 가능하므로 기존 공정을 변경하지 않 고서 초박형 디바이스 웨이퍼를 처리할 수 있다.

이렇게 만들어진 초박형 디바이스 레이어를 적층하면 더 높은 대역폭의 인터커넥트를 구현할 수 있으며, 차세대 고성능 시스템을 위한 다이를 설계 및 세분화하기 위한 새로운 기회를 만들 수 있다.

트랜지스터 로드맵이 3nm 이하 노드로 진화함에 따라 매립형 전원 레일, 후면 전원 공급 네트워크, 상보성 FET(CFET), 2D 원자 채널 같은 새로운 아키텍처와 설계 혁신이 필요해졌다.

이런 모든 기법들에는 극히 얇은 소재의 레이어 이송이 요구된다. 실리콘 캐리어와 무기 박막은 전공 정 제조 플로우를 위한 프로세스 청결성, 소재 호환성, 높은 처리 온도 요건을 지원한다. 반면 지금까지는 실리콘 캐리어가 그라인딩, 연마, 식각 공정을 거쳐서 완벽하게 제거돼야 했지만, 이는 작업 중인 디바이스 레이어의 표면에 마이크론 대의 차이를 유발하므로, 첨단 트랜지스터 노드 의 박형 레이어 적층에 사용하기에는 적합하지 않았다.

EVG의 새로운 NanoCleave 기술은 적외선 레이저와 무기 박막을 사용하므로 실리콘 상에서 나노미 터 정밀도로 레이저 디본딩이 가능하다. 이는 첨단 패키징 공정에서 유리 기판을 사용할 필요가 없도 록 해 온도 한계와 유리 캐리어 호환성 문제를 피할 수 있게 해주며, 기존 공정을 변경하지 않고도 모 든 공정에서 캐리어를 통해 초박형(한 자릿수 마이크론 대 이하) 레이어를 이송할 수 있다.

이렇게 나노미터 대의 정밀도를 지원하는 EVG의 새로운 프로세스는 더 얇은 디바이스 레이어와 패 키지를 필요로 하는 첨단 반도체 디바이스 로드맵의 요구를 충족하고, 향상된 이종 집적을 가능하게 하며, 유리 기판 사용 필요성 제거 및 박막 레이어 이송 가능성을 통해 공정 비용을 절감할 수 있게 해준다고 업체 측은 강조했다.

EV Group의 기술 이사인 폴 린드너(Paul Lindner)는 "반도체 공정 노드를 축소하기가 갈수록 더 복잡 하고 어려워지고 있다. 공정 노드를 축소하려면 프로세스 허용공차 또한 점점 더 줄어들기 때문이다. 업계에서는 더 높은 집적도와 더 높은 디바이스 성능을 달성하기 위한 새로운 프로세스와 집적 방법 을 필요로 한다. 우리의 NanoCleave 레이어 릴리즈 기술은 박형 레이어와 다이 적층을 통한 반도체 크기 축소에 있어서 게임 체인저가 될 것이며, 반도체 업계에서 가장 압박이 심한 요구 사항들을 해 결할 잠재력을 가지고 있다. NanoCleave는 표준 실리콘 웨이퍼 및 웨이퍼 공정들과 호환되는 유연하 고 범용성이 뛰어난 레이어 릴리즈 기술을 통해 우리 고객들이 첨단 디바이스 및 패키징 로드맵을 실현할 수 있게 지원할 것이며, 고객들은 이 기술을 자신들의 기존 팹에 지체없이 통합하고 시간과 비용을 절감할 수 있을 것"이라고 말했다.

EVG의 NanoCleave 기술은 실리콘을 투과하는 고유의 파장을 사용하여 실리콘 웨이퍼의 뒷면을 적 외선 레이저에 노출시킨다. 표준 증착 공정으로 형성된 무기 박막이 IR 광을 흡수함으로써 사전에 정 밀하게 지정된 레이어나 면적으로 실리콘을 분리시킨다.

무기 박막을 사용함으로써 좀더 정밀하고 얇은 레이어를 사용할 수 있다(유기 접착제를 사용할 때 수 마이크론 대였던 것에 비해 수 나노미터 대로 얇아짐). 뿐만 아니라 무기 박막은 고온 공정(최대 1000°C)과 호환 가능하므로, 에피택시, 증착, 어닐링 같이 유기 접착제를 사용할 수 없는 많은 새로운 전공정 애플리케이션에서 레이어 이송을 가능하게 한다. EVG의 NanoCleave 기술은 현재 EVG 본사 에서 데모가 가능하다.

한편 EVG는 지난 1980년에 설립된 이래로 반도체, MEMS, 화합물 반도체, 파워 디바이스 그리고 나 노기술을 이용한 소자들을 제조하는데 필요한 장비 및 공정 솔루션을 제공하는 세계적인 전문 기업 이다.

웨이퍼 본딩, 박형 웨이퍼 처리 기술(TWHS), 리소그래피 / 나노 임프린트 리소그래피(NIL) 및 계측기 를 포함한 주요 제품 이외에도 포토 레지스트 코터, 웨이퍼 세정장비 및 검사 시스템을 개발 생산하 고 있다. 또한, EVG 글로벌 고객들과 파트너들을 위한 서비스와 협력지원을 위해 정교한 네트워크를 구축해 놓고 있다.

[비즈월드=정재훈 기자 / jungjh@bizwnews.com]

http://www.bizwnews.com/news/articleView.html?idxno=75824