

(China)

EV GROUP BRINGS REVOLUTIONARY LAYER TRANSFER TECHNOLOGY TO HIGH-VOLUME MANUFACTURING WITH EVG®850 NANOCLEAVE™ SYSTEM - December 13, 2023

EV Group today introduced the EVG®850 NanoCleave™ layer release system—the first product platform to feature EVG's revolutionary NanoCleave technology. The EVG850 NanoCleave system enables nanometer-precision release of bonded, deposited or grown layers from silicon carrier substrates using an infrared (IR) laser coupled with specially formulated inorganic release materials in a proven, highvolume-manufacturing (HVM) capable platform.

EV集团为EVG®850 NANOCLEAVE™系统采用 革命性的层转移技术,实现批量生产

红外激光切割技术实现了纳米级精度的硅基板超薄层转移,为先进封装和 晶体管微缩的三维集成带来革命性的变化

奥地利圣弗洛里安, 2023年12月13日——为微机电系统 (MEMS) 、纳 米技术和半导体市场提供晶圆键合和光刻设备的领先供应商EV集团 (EVG) 今天推出EVG®850 NanoCleave™层剥离系统,这也是首个采 用EV集团革命性NanoCleave技术的产品平台。EVG850 NanoCleave系 统采用红外 (IR) 激光器与经过验证的大批量制造 (HVM) 平台中的特殊 配方的无机剥离材料相结合,实现了硅载体基板上键合层、沉积层及生长 层的纳米级精度剥离。因此,EVG850 NanoCleave无需使用玻璃载体, 实现了用于先进封装的超薄芯粒堆叠,以及用于前端处理的超薄3D层堆 疊,包括先进逻辑、存储器和功率器件形成,以支持未来的3D集成路线

首批EVG850 NanoCleave系统已被安装于客户生产车间,EV集团联手客 户及合作伙伴,正在客户现场和EV集团总部举行近二十多场产品演示活

硅载体有利于3D堆叠和后端处理

在3D集成中,玻璃基板已成为通过与有机粘合剂的临时键合来构建器件层的一种既定方法,使用紫外线 (UV) 波长激光溶解粘合剂并剥离器件层,然后将器件层永久键合至最终产品的晶圆上。然而,半导体制造设备主要围绕硅设计,需要进行昂贵的升极才能用于加工玻璃基板。此外,有机粘合剂的加工温度清晰作于300°C。因此只能用于后端加工。

使硅载体具有无机剥离层避免了这些温度和玻璃载体兼容性问题。红外激 光还可以达到纳米级切割精度,能够在不改变记录工艺的前提下加工极薄 的器件晶片。这种薄器件层进行后续堆叠,可实现更高带宽的互连,并为 下一代高性能器件设计和芯片分割带来新的机遇。

下一代晶体管节点需要采用薄层转移工艺

此外, 3纳米以下节点的晶体管路线圈还要求采用新型架构和设计创新, 如埋入式电源轨、背面功率输送网络、互补场效应晶体管 (CFET) 和2D 原子通道等。这些邮需要对极薄材料进行层转移。硅载体和无机剥离层能 够满足前端制造流程对工艺清洁度、材料兼容性和较高工艺温度的要求。 然而, 迄今为止, 硅载体仍须通过研磨、抛光和蚀刻等工艺才能完全去 除, 导致工作器件层表面出现微米级变化, 因此这种方法不适合在高级节 点进行薄层址叠。

"可剥离"的熔融键合

EVG850 NanoCleave利用紅外激光和无机剥离材料,能够在生产环境中 以纳米精度对硅载体进行激光切割。这种创新工艺无需使用玻璃基板和有 机粘合剂,实现了超薄层转移,而且能够兼容下游工序的前端工艺。 EVG850 NanoCleave兼容高温(最高可达1000°C),支持要求最苛刻的 前端工艺,室温红外切割工艺也确保了器件层和载体基板的完整性。层转 移工艺还无需使用与载体晶片研磨、抛光和蚀刻相关的昂贵溶剂。

EVG850 NanoCleave与EV集团业内领先的EVG850系列自动临时键合/剥 离及"绝缘体上柱" (SOI) 键合系统基于相同的平台,采用紧凑设计, 晶圆处理系统已通过批量生产 (HVM) 验证。

EV集团研发项目经理Bernd Thallnerl博士介绍说: "EV集团创办40多年 以来始终走在行业前端,坚持探索新技术,服务于微米和纳米制造技术的 下一代应用。近来,3D和异构集成已成为提升新一代半导体器件性能的重 要驱动因素,反过来又使晶圆键合成为改进PPACt(功率、性能、面积、 成本和上市时间)的关键工艺。凭借新型EVG850 NanoCleave系统,EV 集团通过一个多功能平台融合了临时键合和熔融键合的优势,帮助客户在 先进封装和下一代微缩晶体管的设计和制造领域扩展未来路线图。"

关于 EV 集团(EVG)

EV集团 (EVG) 是为半导体、微机电系统 (MEMS) 、化合物半导体、功率器件和纳米技术器件制造提供设备与工艺解决方案的领先供应商。主要产品包括: 晶圆键合、薄晶圆处理、光刻/光刻纳米压印 (NIL) 与计量设备,以及光刻胶涂布机、清洗机和检测系统。EV集团成立于1980年,可为全球各地的客户和合作伙伴网络提供服务与支持。

责任编辑: 李颖 标签: EV集团 技术产品平台

相关资讯

11月份如何经济特殊回升向好 期均旋线,安极时代:2023第67字下半度数产品发布会图离落署 则出口倒行深则分行器0232年"完定推传图"活动 进出口银行深则分行整金产品保贴"一带一路"共建国家经贸合作 中国进口银行深则分行统合升展"联学联联综合力 合作共赢成发展"主题日活动 类别线等评成开启线。《带来等概整等符》

> 关于我们 | 联系我们 | 法律声明 ⑥ 1999-2023 北京中能网讯咨询有限公司

京ICP证040220号