

(China)

EV GROUP REVOLUTIONIZES 3D INTEGRATION FROM ADVANCED PACKAGING TO TRANSISTOR SCALING WITH NANOCLEAVE LAYER RELEASE TECHNOLOGY - September 13, 2022

EV Group (EVG) today introduced NanoCleave™, a revolutionary layer release technology for silicon that enables ultra-thin layer stacking for front-end processing, including advanced logic, memory and power device formation, as well as semiconductor advanced packaging. NanoCleave is a fully front-endcompatible layer release technology that features an infrared (IR) laser that can pass through silicon, which is transparent to the IR laser wavelength.

利用NanoCleave技术,先进封装工艺可以采用硅晶圆载体,例如使用模具和重组晶圆的扇出 型晶圆级封装 (FoWLP) ,以及用于3D堆叠IC (3D SIC) 的中介层。NanoCleave还可以兼容高温 工艺。也能够为3DIC和3D顺序集成应用提供新型工艺流程。甚至能够在硅载体上实现超薄层的混 合和熔融键合,从而彻底改变3D和异构集成,改变新一代微缩晶体管设计中的材料转移。

今年的台湾国际半导体展(SEMICON Taiwan)将于9月14日至16日在台北南港展览馆1馆 (TaiNEX 1) 举行,届时EV集团高管将向与会者介绍这项突破性的红外激光转移技术。展会参加者 可以在4楼参观EV集团的#L0316展位,了解详细信息。

NanoCleave离型层技

术改变从先进封装到晶

硅载体有利于3D堆叠和后端处理

在3D集成中,用于博園國处理的载体技术是实现更高性能系统和增加互连带宽的关键所在。业内的常见方法是使用玻璃载体与有机粘合剂临时粘合,用于构建器件层,再使用紫外(UV)波长激光溶解粘合剂,释放器件层,再将其永久粘合于最终产品晶圆上。然而,现有的半导体设备主要围绕硅器件设计,需要进行成本不菲的升级才能处理玻璃基板。此外,有机粘合剂的加工温度一般限制在300°C以下,也限制了它们在后端加工中的应用。

而采用无机离型层的硅载体能够解决温度问题和玻璃载体兼容性问题。此外,红外激光切割能 够达到纳米精度,因此有可能在不改变工艺记录的前提下加工极薄的器件晶圆。此类薄器件层的后 续堆叠还可实现更高带宽的互连,为下一代高性能系统设计和分割晶圆提供新的机遇。

新一代晶体管节点需要新型层转移工艺

另一方面,3餘米以下节点的晶体管发展规划也需要新型架构和设计创新,例如埋入式电源轨、后端供电网络、互补场效应晶体管(CFET),甚至2D原子通道,所有这些技术部需要实施超薄材料的层转移。硅载体和无机离型层技术能够满足前端制造流程对工艺清洁度、材料兼容性和高加工温度的要求。然而,目前必须使用研磨、抛光和蚀刻等工艺才能完全去除硅载体,但这些工艺也会导致工作器件层表面出现小范围微变化,因此并不适用于先进节点的薄层堆叠。

EV集团的新型NanoCleave技术利用紅外激光和无机离型材料,在硅载体上实现纳米精度的激光剥离。这种技术使先进封装无需使用玻璃基板,巧妙避开了温度和玻璃载体兼容性问题,而且能够在前端处理中通过载体实现超薄层(一微米及以下)转移,无需改变工艺记录。EV集团的新工艺可以达到纳米精度,能够为先进的半导体器件开发规划提供支持,此类器件需要采用更薄的器件层和封装工艺,加强异构集成,并通过薄层转移和取消玻璃基板来降低加工成本。

EV集团执行技术总监保罗·林德纳(Paul Lindner)表示: "由于工艺公差更加严格,半导体微缩技术正在变得日益复杂,而且难以实现。行业需要新的工艺和集成方法,以实现更高的集成密度和设备性能。我们的NanoCleave离型层技术通过薄层和芯片堆叠实现半导体微缩。改变行业现状,满足严苛的行业需求,NanoCleave提供了高度通用的离型层技术,帮助客户开发出更先进的产品,制定更高效的封装规划,适用于标准硅晶圆和晶圆工艺,在晶圆厂内实现不同技术的无缝集成。为客户节约更多的调和资金。"

独特的红外激光技术

EV集团的NanoCleave技术对硅晶片背面采用红外激光曝光,这种激光的波长可以穿透硅片。 这种技术使用标准沉积工艺,将无机离型层预构至硅叠层,吸收红外光,在预先精确定义的层或区域完成硅片切割。NanoCleave使用无机离型层,可以实现更精确、更纤薄的离型层(只有几纳米,而有机站合剂为几微米)。此外,无机离型层可兼容高温处理工艺(最高 1000°C),能够为多种新型前端应用实现晶层转移。例如在不兼容有机站合剂的应用中实施外班。沉积和退火。

产品上市信息

EV集团总部提供NanoCleave离型层技术演示服务。

关于 EV 集团(EVG)

EV集团 (EVG) 是为半导体、微机电系统 (MEMS) 、化合物半导体、功率器件和纳米技术器件制造提供设备与工艺解决方案的领先供应商。主要产品包括:晶圆键合、薄晶圆处理、光刻/光刻 纳米压印 (NIL) 与计量设备,以及光刻胶涂布机、清洗机和检测系统。EV集团成立于1980年,可为全球各地的客户和合作伙伴网络提供服务与支持。

所签: 责任编辑: 清风徐来

相关新闻

- · EV集团使用NanoCleave离型层技术改变从先进封装到晶体管微缩的3D集成
- 武清开发区与世界500强企业麦格纳集团合作签约
- •张莹莹:不惧"至暗时刻",创造自己说了算的人生!
- 司马南恩将仇报,上演现代版农夫与蛇故事
- 喜获增量订单,"东风天翼"助力东风汽车价值提升
- 夜空彩虹用光影缔造万物生机,点亮宁波万悦集悦见美好生活

张莹莹: 不惧"至暗时刻",创造自己说了算的人生!

CONTRACTOR STREET, RESIDER, STUTTERS

司马南恩将仇报,上演 现代版农夫与蛇故事

喜获增量订单,"东风 天翼"助力东风汽车价

夜空彩虹用光影缔造万 物生机,点亮宁波万悦 集悦见美

8月交付量1007台,智 己L7克服全球供应链 紧张难题

政企联动打造链式生态 圈,联想懂的通信获 "未来独角

EV集团拓展与工研院 (ITRI) 在异构集成工 艺开发领域的

精选推荐

- 财经观察: 美联储回购之"水"能否解金融市
- 新研究: 常喝茶有助大脑健康
- 庆祝中华人民共和国成立70周年大型成就展在
- 在内蒙古,习近平讲了这样一堂"公开课"
- 上半年我国新设外资企业超2万家
- 李克强主持召开国家应对气候变化及节能减排
- 习近平总书记在中央和国家机关党的建设工作
- 南方为何"暴雨倾城"

随机新闻

- 北大青鸟: java培训人才的摇篮!
- 如何学好oracle? 如何选择oracle课程?
- 粵商贷"端午节送温暖"走进福田区福利中
- 光伏工业面临新发展,2012有望突破
- 中国 (河北) 国际新媒体微电影节将在年末拉
- 佐丹奴联乘棒球衫新品上市