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Abstract 

Stretchable and curved electronic devices are a promising technology trend due to their remarkable 
advantages. Many approaches have been developed to manufacture stretchable and curved electronics. 
Here, to allow such electronics to better serve practical applications, ranging from wearable devices to 
soft robotics, we propose a novel vertical serpentine conductor (VSC) with superior electrical stability to 
interconnect functional devices through a silicon-based microfabrication process. Conformal vacuum 
transfer printing (CVTP) technology was developed to transfer the networked platform onto complex 
curved surfaces to demonstrate feasibility. The mechanical and electrical performance were investigated 
numerically and experimentally. The VSC interconnected network provides a new approach for 
stretchable and curved electronics with high stretchability and reliability. 
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Introduction 

Recently, curved electronics have developed rapidly due to the omnipresent nature of curved surfaces. 
Compared with traditional electronic devices, which are inherently rigid and fragile, curved electronics can 
be stretched and bent to conform to the desired surface curvature while maintaining their electrical 
properties. Based on these unique advantages, curved electronic technologies have great potential for 
electronic devices in various application scenarios, including wearable devices1,2,3, smart contact 
lenses4,5,6, soft robotics7,8,9, smart skins10, flexible displays11, and energy harvesting12,13,14. 

Several technologies for manufacturing curved electronics have recently emerged, including the direct 
fabrication of materials onto curved surfaces and the indirect transformation of planar-manufactured 
deformable devices into curved shapes. The former approach utilizes technologies such as inkjet 
printing15,16, 3D printing17,18, and laser direct writing19,20,21 to directly construct curved electronics. 
While these methods provide a cost-effective approach to manufacture curved devices, they have 
limitations in printed materials and structures, and the electrical performances are also far inferior to the 
devices manufactured using standard 2D fabrication technology. The latter strategy is to manufacture 
devices in a planar form and then transform them into desired curved shapes, which results in higher 
performance and more versatility in application. In this approach, stretchability is crucial to enhance the 
compatibility level and allow devices to conform to complex curved surfaces, particularly those with 
nonzero Gaussian curvatures22, such as spherical and saddle surfaces. 

Generally, stretchability can be obtained through two approaches: using intrinsically stretchable materials 
or structure-enabled stretchability. The first strategy often involves elastic polymeric substrates, such as 
polydimethylsiloxane, hydrogels, and Ecoflex, along with conductive fillers such as carbon nanotubes, 
metal nanowires, and graphene to create stretchable and conductive composites23,24,25. Although such 
composites have advantages including natural flexibility, stretchability and low cost, the fatal drawback is 
that the conductivity is far lower than that of conventional conductors. The second strategy utilizes 
structural designs to assist conventional materials in achieving device-level stretchability. For example, a 
prestretched PDMS substrate was utilized to form a wavy buckled structure26,27, which was repeatedly 
stretched and compressed without damaging thin films. Following that, many generations of island-bridge 
designs28 were proposed to obtain high stretchability. The islands are rigid and mounted functional 
components interconnected by stretchable bridges with special structural designs, such as arc-shaped 
structures29,30, in-plane serpentine structures31,32,33,34, and 3D helical forms35,36. The formation of 
arc-shaped structures is similar to the wavy buckled structure, resulting in limited stretchability. The 
island-bridge design using the in-plane serpentine structure can realize high-level stretchability. However, 
in-plane serpentine interconnects often have sharp stress concentration problems during stretching 
deformation37. Optimizing the geometric dimensions of serpentine strips38,39 can improve this issue but 
results in a trade-off between the mechanical properties and electrical performance. Recently, several 
fabrication methods have been developed to obtain serpentine structures with high aspect ratios40,41, 
but coupling with PDMS brings application limitations and functional degradation during long-term usage. 
3D helical interconnects42,43 formed by a prestretched elastomer substrate can also relieve stress 
concentrations through uniform out-of-plane deformations. One of the challenges, however, is their 
incompatibility with mature industrial manufacturing processes due to the use of elastomeric substrates in 
the core step, which hinders future mass production. 

After manufacturing deformable devices, transformation is needed to obtain curved electronics44,45,46. 
Several technologies have been developed to assist the transformation process, but all suffer from some 
deficiencies. For example, prestretching and releasing elastomeric membranes with curved shapes were 
proposed to pick up and transfer electronic devices in 2D geometry to 3D forms4. Unfortunately, the 
prestretching of the elastomer membrane limits it to simple curved shapes and low area usage. Elastomer 
materials such as polydimethylsiloxane (PDMS) and Eco-flex always suffer from fatigue problems, which 
influence the normal usage of the device. Another approach adopted a conformal additive stamp printing 
method during the transfer process, where a pneumatically inflated elastomeric balloon is used to pick up 
and print 2D devices46. This approach can be applied to various applications and arbitrary curved 
shapes. However, location distortion occurs due to multiple transformations between planar and curved 
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forms. Notably, origami tessellation can also be applied to achieve stretchable and curved 
electronics47,48,49,50 as a structure-enabled curved device. Deng and coworkers48 utilized a designed 
and optimized 2D origami tessellation manufactured in wafer-based technology. After peeling off from the 
silicon wafer, the tessellation was converted into a three-dimensional curved structure along the zigzag 
crease. The origami folding endows the electronic device with system-level stretchability, allowing the 
device to wrap closely onto predesigned curved surfaces. However, devices mounted on each origami 
unit are angled after folding, resulting in undesirable properties, and the substrate also limits its 
application scenarios. 

Although various technologies have been developed to improve the conformability of curved electronic 
devices when integrated onto arbitrarily curved surfaces, challenges still exist. In this report, we combine 
silicon-based MEMS fabrication technology and a transfer printing strategy to manufacture curved 
electronic devices. A vertical serpentine conductor (VSC) was proposed and manufactured to solve the 
sharp stress concentrations at arc regions during the extension and contraction of interconnects and 
improve the conformability and reliability of island-bridge constructed curved electronics (Fig. 1). The 
metal layer was arranged near the mechanical neutral plane by adjusting the thickness of the bottom 
Parylene-C layer to improve the mechanical properties of the composite structure for interconnects 
(Fig. 1c). The whole functional system was manufactured with high performance by taking advantage of 
silicon-based MEMS fabrication technology. Then, a curved display was manufactured as a 
demonstration. The LED chips were picked up, placed, and soldered onto the fabricated silicon-based 
planar platform. Next, the customized conformal vacuum transfer printing (CVTP) technique was 
developed to transfer the system onto arbitrary curved surfaces for encapsulation. Finite element analysis 
was used to simulate the deformation of the proposed structures, and tensile experiments were 
conducted to verify the mechanical properties of the VSC-enabled system. 

Fig. 1: Schematic diagram of VSC-enabled curved electronics. 

 
a Curved electronics interconnected with vertical serpentine conductors. b Magnified pictures of curved 
electronics in (a). c Schematic diagram of the vertical serpentine conductor, including three layers, where 
the metal layer is arranged near the mechanical neutral plane 

Full size image  
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Results 

Silicon-based MEMS fabrication for the planar configuration 

Stretchable and deformable functional island nodes interconnected with VSCs were manufactured on a 
planar Si wafer. The multilayer structure of an 8 × 8 LED array display device is illustrated in Fig. 2. 
Figure 2a presents details of the materials and patterns of different layers. At the start of the process, 
silicon islands were manufactured as vehicles to have functional layers and structures deposited and 
patterned. The fabrication steps here involve photolithography and etching to define the oxide layer as the 
mask from the backside of the silicon wafer. The LED array is controlled individually with the passive 
matrix configuration, consisting of three metal layers, two of which are used for the anodes and cathodes, 
with the third being for the electrical interconnection between the island nodes. Metal layers were 
deposited using a sputtering machine, and wet etching processes were followed to pattern the metal 
layers. In addition, an oxide layer was deposited as an insulating layer between metal layers. After 
deposition and defining electrode pads for bonding LED chips onto the silicon islands, grooves with a 
width of 10 μm and a depth of 40 to 50 μm, which mold the interconnects between island nodes, were 
patterned using the deep reactive ion etching system (DRIE). Three layers, including Parylene-C, metal, 
and Parylene-C, were deposited successively to fill the grooves. Initially, the first Parylene-C layer was 
deposited and patterned at the bottom; by adjusting the thickness of the Parylene-C layer, the metal layer 
can be deposited and positioned close to the neutral plane of the interconnects, thereby enhancing its 
mechanical robustness. Subsequently, the second Parylene-C layer was deposited to fill the groove and 
protect the inner metal layer. Photolithography and reactive-ion etching (RIE) were used here to define 
and pattern the Parylene-C and oxide layers. Finally, DRIE and RIE were both utilized sequentially to etch 
silicon from the backside of the Si wafer, release the VSCs in the grooves and obtain the interconnected 
silicon-based functional vehicles. Then, LED chips were picked and placed and bonded at electrode pads 
on each island node. Figure 2b shows a 3D schematic of silicon-based functional vehicles with LED chips 
applied. Furthermore, multiple interconnections were designed to connect island nodes. They worked as 
the redundancy for each other in the current design to improve the reliability of the device. They can also 
work as different data connections for future more complicated circuits. The detailed processes are 
described in the “Methods” section. 

Fig. 2: Design concept of the VSC-enabled stretchable electronic device. 
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a The structure and material details for the multilayer of an 8 × 8 LED array. b Three-dimensional 
stretchable and curved display in a planar form 

Full size image  

Figure 3 shows optical and SEM images of the device after releasing interconnects and bonding BXDA 
40 mil × 40 mil LED chips (Bridgelux) onto the functional islands. Low-temperature solder paste was 
manually dispensed using a three-axis motion platform. Then, a Manual Flip Chip Bonder (FINEPLACER 
96 “Lambda”) was used to pick and place LED chips onto silicon islands, and the reflow process was 
followed to fix chips on the electrodes. A 22 mm × 22 mm display with an 8 × 8 LED array is presented in 
Fig. 3a. The SEM image of VSC is detailed in Fig. 3b, c, with a metal layer sandwiched between 
Parylene-C layers. The display can be wrapped onto a finger (Fig. 3d) and bent in different directions 
(Fig. 3e, f). The device shows high reliability during deformation and fits into different curved shapes while 
maintaining its structural integrity and electrical performance. 
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Fig. 3: Images of the functional device. 

 
a A photograph of an 8 × 8 LED array with released VSCs hung by a tweezer. b SEM image of released 
VSCs between functional island nodes in (a). c A magnified image of the VSC structure in (b). d A 
photograph of the 8 × 8 LED array wrapped on a finger. e, f Photographs of the 8 × 8 LED array bent in 
different directions while maintaining structural integrity and electrical properties 

Full size image  

Conformal vacuum transfer printing 

A conformal vacuum transfer printing (CVTP) method was proposed for functional device pick-and-place 
processes. Figure 4 shows the detailed process of CVTP to transfer printing a functional device onto the 
curved surface (video clip available in Supplementary Movie 1). The process began with the preparation 
of functional devices manufactured using silicon-based MEMS fabrication technology. First, the device 
was picked up from the planar substrate utilizing a prepared thin polymer film with the edge fixed by an 
acrylic ring. Then, the device was transferred onto an arbitrary curved surface in a customized vacuum 
chamber. During the picking-up process, the thin film was fastened to the ring holder, allowing for 
controlled movement up and down. The thin film was lowered gently until it completely contacted the 
device, enabling the device to be picked up from the substrate. The ring holder was designed with an 
inner diameter that matches the outer size of the customized chamber, ensuring that the device was 
aligned at the center of the curved surface during the printing process. Air channels were built into the 
bottom of the chamber to connect it with an external pump. Next, the printing process successively 
completed pumping and venting steps. During the pumping step, the edge of the thin film came into close 
contact with the chamber, causing the rest of the thin film to stretch uniformly and thus printing the device 
onto the prepared curved mold. When the device had entirely made contact with the curved surface, the 
chamber was vented, resulting in the device being retained on the curved substrate due to the treated 
surface utilizing uncured PDMS. 

Fig. 4: Schematic of conformal vacuum transfer printing (CVTP) processes. 
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a Functional device preparation. b Picking up functional device. c Hemispherical mold 
preparation. d Printing device onto hemispherical mold. e Complete transfer 

Full size image  

VSC-enabled curved displays 

The CVTP approach was used to transfer the 8 × 8 LED array onto different complex curved substrates, 
including hemispherical substrates, saddle-shaped substrates, and irregularly curved surfaces. Three 
different concave curved molds were designed and manufactured through the 3D printer, including a 
hemispherical mold with a 2.5 cm diameter, a saddle surface mold with a 2.5 cm diameter curvature at the 
saddle point, and an irregular curved surface with dimensions of 2.5 cm * 2.5 cm. Then, the corresponding 
convex curved substrates were fabricated using the demolding process. Additional details of these steps 
are provided in the “Methods” section. 

Figure 5 presents the VSC-enabled curved displays. A diagonal view of the hemispherical display is 
demonstrated in Fig. 5a. The LED array is wrapped intimately onto the curved surface, and a magnified 
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image (Fig. 5d) reveals different deformations of the interconnects in the center region to better fit the 
curved surface. Interconnects in the middle area are in a stretched status, while interconnects in the 
surrounding parts show a state of compression. The saddle-shaped display (Fig. 5b,e) and the irregular 
curved display (Fig. 5c, f) are also presented to demonstrate the conformability of the VSC-enabled 
curved display and the feasibility of the CVTP technology. The LED arrays are configured with a passive 
matrix to drive each chip individually and display designed patterns. Figure 5g presents all LED pixels on 
a hemispherical surface lighting up, and Fig. 5h to Fig. 5l demonstrate the letters “HKUST” individually 
(corresponding video clip shown in Supplementary Movie 2). 

Fig. 5: Images of curved displays. 
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a Image of the 8 × 8 LED array packaged on a hemispherical mold. b Image of the 8 × 8 LED array 
packaged on a saddle-shaped substrate. c Image of the 8 × 8 LED array wrapped on an irregular curved 
substrate. d A partially magnified image of the LED array interconnected with VSCs in (a). e A partially 
magnified image in (b). f A partially magnified image in (c). g Image of all LEDs lit up on the curved 
substrate. h–l Images of the curved display presenting the letters “HKUST” individually 

Full size image  

Mechanical properties 

To further investigate the mechanical properties of the VSC-enabled functional device after transfer 
printing onto curved surfaces, FEA simulation was conducted to analyze representative 8×8 island nodes 
interconnected with VSCs covered intimately onto curved surfaces, including hemispherical surfaces and 
saddle surfaces. The geometric dimensions here are identical to those of the curved electronics 
presented in Fig. 5. Figure 6 shows the simulation results, including an overall view of the stress 
distribution (Fig. 6a, c) and magnified pictures of the stress distribution. For the device covered on the 
hemispherical surface, the maximum stress occurred at the vertical serpentine conductors in the middle 
region, with a value of 6.1 Mpa (marked in a red box, as shown in Fig. 6b). For the device covered on the 
saddle surface, the maximum stress occurred in the marginal region, with a value of 6.8 Mpa (marked in a 
red box, as shown in Fig. 6d). Both of the maximum stresses are far lower than the tensile strength of 
copper at approximately 210 Mpa. Therefore, VSC-enabled stretchable and curved electronics effectively 
relieve stress concentrations and greatly enhance the conformability and reliability of curved electronics. 

Fig. 6: FEA results for 8 × 8 island nodes interconnected with VSCs covered intimately onto curved 
surfaces. 
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a An overall view of the stress distribution for the curved device covering the hemispherical surface. b A 
magnified picture of the stress distribution in the middle region in (a). c An overall view of the stress 
distribution for the curved device covered on the saddle surface. d A magnified picture of the stress 
distribution in the marginal region in (c) 

Full size image  

The LED arrays demonstrated the ability to be stretched, bent, folded, and wrapped intimately onto 
curved surfaces. However, deformation also occurs during the CVTP process. To investigate the 
stretchability and reliability of the device, tensile experiments were performed for vertical serpentine 
conductors and the VSC-enabled LED array. Details of these experiments are provided in Supplementary 
Note 5. The VSC can be stretched up to 350% while maintaining mechanical integrity, and the electrical 
resistance is highly stable, only changing less than 2% under a 300% applied strain (Fig. S5). In addition, 
the VSC-enabled LED array shows favorable reliability after 100 cycles at 100% expansion in the 
durability test, and the corresponding video clip is available in Supplementary Movie 4. Redundant 
interconnects were designed and incorporated to interconnect island nodes and further improve the 
reliability of the device. The stretchability can be further increased through different designs of the VSC 
interconnect and optimization of the ratio of the island nodes and the spacing. These related 
improvements will be investigated in future research. 

Discussion 

To summarize, a VSC interconnected functional platform was proposed and manufactured to create 
three-dimensional stretchable and curved electronics. This strategy provides a new approach for 
fabricating stretchable and curved electronics. Compared with the in-plane serpentine structure, VSCs 
can avoid sharp stress concentrations at the arc region during deformation and effectively improve their 
mechanical and electrical properties. By taking advantage of silicon-based MEMS fabrication technology, 
stretchable and curved platforms can be constructed and integrated with multifunctional devices. In 
addition, CVTP technology was developed to transform manufactured devices into arbitrarily curved 
surfaces. The excellent deformability of VSCs enabled the elastomeric film to pick up the device and 
intimately contact complicated curved surfaces during the transfer printing process. An LED array with a 
passive matrix configuration was manufactured and packaged onto hemispherical and saddle surfaces to 
demonstrate the feasibility of the approach. The mechanical properties were investigated numerically and 
experimentally. The VSC-enabled devices possess high stretchability, stability and reliability, making 
them promising candidates for stretchable and curved electronics. 

Methods 

Silicon-based microfabrication 

The fabrication processes of VSC-enabled stretchable and curved electronic devices are detailed in the 
following section (Fig. 7). 

Fig. 7: Silicon-based microfabrication process for stretchable and curved electronics. 
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a, b Pattern on the reverse side of the silicon wafer. c–e Two metal layer deposition and patterning for 
electrodes on islands. f Groove patterning and etching using the DRIE system. g–j Materials deposition to 
fill in the groove and pattern the Parylene-C layers and metal layer to form a sandwich structure for 
interconnects between islands. k Patterning and etching the top layer of Parylene-C. l Dry etch the silicon 
substrate from the reverse side using DRIE and RIE systems to release the conductors and obtain a free 
standing system 

Full size image  

The VSC interconnected functional device was prepared from double-side polished silicon wafers with 3-
μm-thick thermal oxide on top. The fabrication of the device started with photolithography to pattern the 
reverse-side oxide layer, which was designed as the mask layer in the following etching steps. The 
photolithography process included deposition of the adhesion promoter hexamethyldisilazane (HMDS), 
spin-coating of photoresist (HPR 506) at 4000 rpm for 1 min and soft baking on a hotplate at 110 °C for 
2 min, then ultraviolet exposure (λ = 365 µm) with a Karl Suss MA6 aligner (25 mW/cm2) for 9.5 s, followed 
by development with FHD-5 for 60 s, and hard baking in an oven at 120 °C for 30 min. Thereafter, the 
reverse-side silicon oxide layer was etched using Dry AOE Etcher by a mixture of gases C4F8 with a gas 
flow of 100 sccm for 12 min. Then, O2 Plasma was used to remove the photoresist. 

The second step included deposition and patterning of the bottom electrode metal layer onto the front 
side of the Si wafer. The deposition was performed with a CVC-601 Sputter (SPT-CVC) for the first 

https://www.nature.com/articles/s41378-023-00625-w/figures/7
https://www.nature.com/articles/s41378-023-00625-w/figures/7


electrode metal layer (TiW/Cu, 30/500 nm) at a high sputtering rate (17.5 nm/min for TiW and 100 nm/min 
for Cu). Then, the metal layer was patterned by a photolithography process with 2-μm-thick HPR 506 
photoresist, and the wet etching process used a copper etchant and hydrogen peroxide at 60–70 °C. 

The third step included deposition of a thin silicon dioxide layer, which functioned as an insulating layer 
between two electrode metal layers. A 100-nm-thick oxide layer was formed using STS PECVD with a 
high deposition rate (55 nm/min) at 300 °C. After that, the deposition and patterning of the second 
electrode metal layer (TiW/Cu, 30/500 nm) were performed on the top of the insulating layer. 

The fourth step included patterning and dry etching of the three-dimensional deep trench for 
interconnects. The 3-μm-thick HPR 506 photoresist was spin-coated onto the front side of the wafer, 
followed by UV exposure, developing, hard baking, and descum. Thereafter, the oxide layer on the 
surface was first etched using 777 etchant (purchased from FUJIFILM Electronic Materials U.S.A., Inc.), 
and then approximately 50 μm-depth grooves were dry-etched using the DRIE etcher system. During the 
DRIE etching process, alternative passivation and etching processes were employed to obtain a highly 
anisotropic deep etch with a low undercut. 

Thereafter, the first layer of Parylene-C was coated on the front side of the silicon wafer using the SCS 
Labcoter 2 (PDS2010) vacuum deposition system. The surface of the silicon wafer was treated with a 
mixture of DI water:IPA:A174 at a ratio of 100:100:1 (by volume) to promote adhesion between the silicon 
wafer and the Parylene C layer. Then, the silicon wafer was placed on a rotating platform during the 
process to achieve a uniform thin film. After, the 8-µm-thick photoresist was spray-coated on the surface 
of the Parylene-C layer to serve as a masking layer for opening the metal layers underneath. The 
photoresist used here was a mixture of AZ9260:MEK:PGMEA with a ratio of 1:8:1 (by weight), which was 
customized for the EVG Spray coating machine. After exposure and development, the RIE system was 
employed to dry etch the Parylene-C layer with an etching rate of 0.5 μm per minute. 

Then, another metal layer was deposited to interconnect the island nodes, followed by the deposition and 
patterning of a second layer of Parylene-C on the front side to encapsulate and protect the internal 
functional layers. The last step was to dry etch the silicon wafer from the backside, and the patterned 
oxide layer was used as a mask layer during the etching process. Both the DRIE and RIE systems were 
employed for VSC interconnected island node release and substrate thinning. 

The Manual Flip Chip Bonder (FINEPLACER 96 “Lambda”) and reflow hotplate were employed during the 
LED chip (30 mil*30 mil) pick-and-place packaging process. A low-temperature solder paste was used 
here to ensure the mechanical properties of Parylene-C. 
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