

Interconnect Density Quest for Endless Melt/Hybrid Bonding is Key – April 1, 2022

設備與材料 技術解密

Thomas Uhrmann

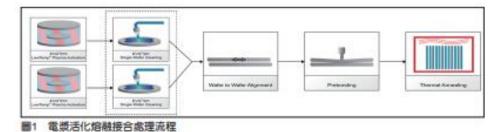
在 半導體製造中,3D 垂直堆疊與異 質整合(將多種不同元件與品粒製 造、組裝與封裝成單一裝置或封裝),對 半導體元件的功耗、效能、面積與成本 (PPAC)的最佳化,是十分重要的手段。

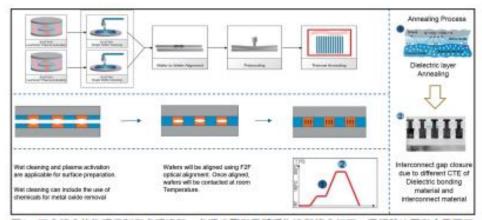
在本系列的前三篇文章中,我們回顧了 數種促成異質整合進展的革命性全新製程 技術,包括晶粒到晶圖(D2W)接合與無光 單微影。本文將探討一種針對3D/異質整 合的新技術,也就是晶圓到晶圓(W2W) 的熔雕與混合接合,此技術目前還在初期 發展階段,但在過去幾年來有相當快速的 進展,讀品片製造商能夠持續擴展其先進 封裝產品路線圖。

熔融與混合接合應用逐步擴展

增職接合或直接品圖接合,是在兩個彼 此接觸的平滑表面上,利用原子化學接合 產生的附著力,來進行接合的技術,熔融 接合在氫橋鍵的協助下,可以讓介電層(又 稱活化羥基官能基)在品圓間進行接合。

這道製程包含兩個步驟,一是品圖在室 溫下接觸,又稱預接合;二則是在攝氏 900~1,200度溫度範圍內進行熱退火,以 便在品圓間建立共價鍵,由於退火過程的 高溫, 品國間的氧化物介面會變得點稠, 填滿兩片品圖接觸面的所有間隙, 進而產 生連續且無任何空隙的接合介面。


利用熔雕接合進行主動裝置整合的一項 突破,就是電漿活化熔雕接合(圖1)。在該 製程中,基板表面在接合前會塗上一層電 漿。受電漿處理的表面將發生變化,產生 更高的能量接合,並縮短最終熱退火步驛 的處理時間,且溫度也較低(攝氏250~350 度)。接著會施以清洗,以進一步進行表面 處理並最佳化接合強度。兩片晶圓隨後會 利用面對面的光學對準技術進行對準,


對準後,兩片品圖會放置在一般的無塵 室,並在室溫環境下彼此接觸,即預接 合。在最後的熱退火過程中,低能量的氫 橋鍵會轉化成共質鍵,並在晶圓間形成永 久的連結。

增融接合最初是應用在絕緣層上覆砂 (Silicon on Insulator, SOI)品圓等工程基 板的製程技術,但現在已演進成利用全範 圖的介電質熔融接合來堆疊品圓的技術。

銅墊片可以與介電層平行處理,使其在 室溫下對介電層進行預接合,並在退火 過程中透過金屬擴散接合達成電接觸(圖 2)。這種情況稱為混合接合。

2 混合接合的物理機制與處理流程。處理步驟與電源活化熔融接合相同,但鋼墊片要與介電層平行處理

銷混合接合因為能夠將問距縮小到10 微米以下,提供更大的互連密度與通訊 頻寬,因此能取代傳統使用銅製微凸塊 (Microbump),作為中階和高階封裝的互 連方案,混合接合的主要應用包括互補式 金屬氧化物半導體(CMOS)影像感測器、 3D堆疊的NAND與DRAM記憶體,以及 3D系統單晶片(SoC),如表1所示。

混合接合更緊密的需求

日益增加的頻寬需求,是促使半導體業 界擁抱異質整合的主因之一,而頻寬要增 加,互連的問距縮小,密度提高,是必然 的趨勢,互連之間的問距越小,裝置上同 樣的面積可以達成更多的連接,而這也意 味著更多的資料能夠被傳送。

如圖3所示,更高的頻寬需求帶動具 備更緊密問距需求的新型封裝技術。從 2.5D過渡到3DIC封裝,以及從3D堆疊 晶片(Stacked IC, SIC)過渡到3D SoC封 裝,可以為頻寬帶來大幅度的提升。這 些嶄新的封裝技術需要更緊密的問題, 相對的也會帶動對不同接合技術的需 求。

另一個觀察不同晶圓接合技術在何處應 用的方式是將它們與不同的裝置設計和品 片分崩還項進行比較(圓4)。同樣地、隨 著核心級到邏輯單元與邏輯開、最後到電 晶體層,互連問距變得更緊密,所需的接 合技術也不同。 在晶圓到晶圓的接合中,需要緊密的對 準與晶圓間疊層的精度,以讓接合晶圓上 互連裝置間有良好的電接觸,同時將接合 介面的互連面積降至最小,使晶圓可以騰 出更多空間生產裝置,隨著市場對元件I/ O性能的追求不斷提升,每一代新產品對

	Backside Illuminated Image Sensor Photo Diode + DRAM + Logic	Memory		Logic	
Device Stack		3D NAND Flash NAND Block + Periphery	Next Gen. Memory Memory + Periphery	SoC Partitioning	
				SolC	SRAM + Logic
Bonding Process	W2W	W2W	W2W	W2W and/or D2W	W2W
	hybrid	hybrid	fusion & hybrid	hybrid	hybrid
Pitch	2µm → 1µm	2µm → 1µm	2µm → <1µm	9µm → 2µm	2µm
Post Bond Overlay	<100nm	<150nm	<100nm	<200nm	<200nm

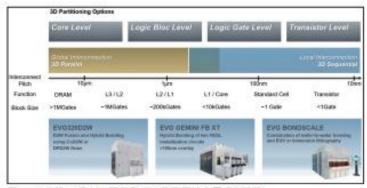
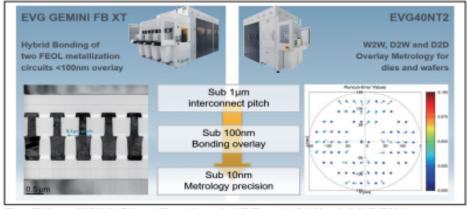


圖4 不同的3D分割還導帶動不同的晶圓接合需求與技術

品圓到晶圓的接合密度要求,也越來越高,

這幾年來,疊層的技術能力已經顯著提 升,代表高密度3D品片堆疊的實現與最 終的商業化,已邁出重大的一步。2017年 時,比利時微電子研究中心(imec)與EVG


> 利用EVG GEMINI FB XT整合熔融接 合系統,將晶圓到晶圓接合的疊層精 度縮小到180奈米,成為混合接合技 衛發展的一個重要里程碑。目前可量 產的疊層精度已經達到100奈米,低 於75奈米的技術則已在開發中(圓5)。

> 面對面的光學對準是晶圓接合系 統效能的關鍵,而EVG在20多年前 即是開創此技術的先驅。如今,我 們利用整合在GEMINI FB XT晶圆 接合系統內的SmartView NT3對準 模組,在EVG的晶圓接合機上達成 面對面的光學對準。

> 混合接合的晶圓到晶圓對準技術 的進步為當今各種大量應用帶來實 際效益,包括影像感測器整合與 NAND Flash堆疊。就背照式CMOS 影像感測器(BSI CIS)而言,高精 度的晶圓到晶圓對準可以實現讀取 速度更快,支援全域快門功能的影 像感測器,全域快門在汽車應用中 特別有幫助,因為讀取速度不夠快 的影像感測器,遇到高速移動的物 件,很容易摑取到模糊的影像。全 域快門功能就是這個問題的解答。

> 混合接合同時能在影像感測器中加 入更多的運算功能,針對如人臉辨識 等安全性應用來說相當有幫助,對於 NAND Flash堆疊,混合接合可以用來

結合分開處理的CMOS與記憶體品圖。透過 此方式,週邊電路位於記憶體上能帶來更高 的位元密度。

隨著記憶體層的數量從目前主流的128 層增加到196層,記憶體晶粒的密度也隨 之增加,因此,互連密度也以類似的規模 增加,並推動晶圓到晶圓接合中對疊層的 需求。

對準/疊層精度屢有突破 異質整合之路更好走

隨著傳統的2D矽晶圓擴充受成本上的 限制,半導體產業轉而致力於包括3D晶 片堆疊的異質整合,以便提升裝置的效 能。晶圓到晶圓接合是實現3D/異質整合 的關鍵製程,同時需要緊密的對準與疊層 精度,使互連裝置問有良好的電接觸。

隨著互連問距在每一代新產品推出後越 來越緊密,品圓對準與疊層製程也須以更 高的精度進行相應的擴充,品圓到晶圓 接合技術的新發展,包括搭載SmartView NT3對準模組的GEMINI FB XT整合式熔 融接合系統,可以為記憶體堆疊、3D系 統單晶片(SoC)、背照式CMOS影像感測 器堆疊與晶粒分割等應用帶來對準與疊層 精度的提升。

(本文作者為EVG事業開發總監)

參考資料

- Semiconductor Engineering, "Bumps Vs.Hybrid Bonding for Advanced Packaging", June 23, 2021, https:// semiengineering.com/bumps-vs-hybridbonding-for-advanced-packaging/
- [2] IEEE Electronics Packaging Society, Silicon Valley Area Chapter, "Bonding Technology for the Next Generation Integration Schemes", June 10, 2021, https: ://ewh.ieee.org/soc/cpmt/presentations /eps2106b.pdf
- [3] ASM International, "Imec and EV Group achieve 1.8µm accuracy in pitch overlay for wafer bonding", https://www.asminternational .org/web/fas/newswire/-/journal_content /56/10180/27105592/NEWS
- [4] Semiconductor Engineering, "3D NAND's Vertical Scaling Race", December17, 2020, https://semiengineering.com/3d-nandsvertical-scaling-race/